DOI QR코드

DOI QR Code

Transient receptor potential melastatin type 7 channels are involved in zinc-induced apoptosis in gastric cancer

  • Kim, Byung-Joo (Division of Longevity and Biofunctional Medicine, Pusan National University, School of Korean Medicine)
  • 투고 : 2010.09.24
  • 심사 : 2011.03.10
  • 발행 : 2011.06.30

초록

Transient receptor potential melastatin 7 (TRPM7) channels are novel $Ca^{2+}$-permeable non-selective cation channels that are ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in the survival of gastric cancer cells. Here we show evidence suggesting that TRPM7 channels play an important role in $Zn^{2+}$- mediated cellular injury. Using a combination of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) methods and cell death assays, we showed that activation of TRPM7 channels augmented $Zn^{2+}$-induced apoptosis of AGS cells, the most common human gastric adenocarcinoma cell line. The $Zn^{2+}$-mediated cytotoxicity was inhibited by the non-specific TRPM7 blockers $Gd^{3+}$ or 2 aminoethoxydiphenyl borate (2-APB) and TRPM7 specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells increased $Zn^{2+}$- induced cell injury. Thus, TRPM7 channels may represent a novel target for physiological disorders where $Zn^{2+}$ toxicity plays an important role.

키워드

참고문헌

  1. Bandyopadhyay B, Bandyopadhyay SK. 1997. Protective effect of zinc gluconate on chemically induced gastric ulcer. Indian J Med Res. 106:27-32.
  2. Bandyopadhyay B, Banerjee P, Bhattacharya B, Bandyopadhyay SK. 1995. Serum zinc level: a possible index in the pathogenesis of peptic ulcer syndrome. Biochem Mol Biol Int. 36:965-972.
  3. Berridge MJ, Lipp P, Bootman MD. 2000. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11-21.
  4. Beyersmann D, Haase H. 2001. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 14:331-341. https://doi.org/10.1023/A:1012905406548
  5. Bitanihirwe BK, Cunningham MG. 2009. Zinc: the brain's dark horse. Synapse. 63:1029-1049. https://doi.org/10.1002/syn.20683
  6. Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, Blass JP, Cooper AJ. 2000. $Zn^{2+}$ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem. 275:13441-13447. https://doi.org/10.1074/jbc.275.18.13441
  7. Calderone A, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV, Zukin RS. 2004. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci. 24:9903-9913. https://doi.org/10.1523/JNEUROSCI.1713-04.2004
  8. Cho CH, Ogle CW, Wong SH, Koo MW. 1985. Effect of zinc sulphate on ethanol- and indomethacin-induced ulceration and changes in prostaglandin E2 histaine levels in the rat gastric glandular mucosa. Digestion. 32:288-295. https://doi.org/10.1159/000199250
  9. Choi DW. 1988. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11:465-469. https://doi.org/10.1016/0166-2236(88)90200-7
  10. Clapham DE. 2003. TRP channels as cellular sensors. Nature. 426:517-524. https://doi.org/10.1038/nature02196
  11. Cuajungco MP, Lees GJ. 1997. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis. 4:137-169. https://doi.org/10.1006/nbdi.1997.0163
  12. Cummings JE, Kovacic JP. 2009. The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care. 19:215-240. https://doi.org/10.1111/j.1476-4431.2009.00418.x
  13. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. 1997. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16:2271-2281. https://doi.org/10.1093/emboj/16.9.2271
  14. Feng P, Li T, Guan Z, Franklin RB, Costello LC. 2008. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer. 7:25. https://doi.org/10.1186/1476-4598-7-25
  15. Formigari A, Irato P, Santon A. 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol Pt C. 146:443-459.
  16. Frederickson CJ, Koh JY, Bush AI. 2005. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 6:449-462. https://doi.org/10.1038/nrn1671
  17. Haase H, Watjen W, Beyersmann D. 2001. Zinc induces apoptosis that can be suppressed by lanthanum in C6 rat glioma cells. Biol Chem. 382:1227-1234.
  18. Hotz MA, Gong J, Traganos F, Darzynkiewicz Z. 1994. Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15:237-244. https://doi.org/10.1002/cyto.990150309
  19. Inoue K, Branigan D, Xiong ZG. 2010. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem. 5:7430-7439.
  20. Jiang J, Li MH, Inoue K, Chu XP, Seeds J, Xiong ZG. 2007. Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res. 67:10929-10938. https://doi.org/10.1158/0008-5472.CAN-07-1121
  21. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. 2008. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering $Mg^{2+}$ homeostasis Science. 322:756-760. https://doi.org/10.1126/science.1163493
  22. Kadakia SC, Wong RK, Maydonovitch CL, Nelson NR, Henkin RI. 1992. Serum and tissue zinc concentrations in patients with endoscopic esophagitis. Dig Dis Sci. 37:513-516. https://doi.org/10.1007/BF01307572
  23. Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY. 1999. Zincinduced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience. 89:175-182. https://doi.org/10.1016/S0306-4522(98)00313-3
  24. Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I. 2008. Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci. 99:2502-2509. https://doi.org/10.1111/j.1349-7006.2008.00982.x
  25. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. 1996. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013-1016. https://doi.org/10.1126/science.272.5264.1013
  26. Lee EJ, Shin SH, Chun J, Hyun S, Kim Y, Kang SS. 2010. The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1. Anim Cells Syst. 14:99-114. https://doi.org/10.1080/19768354.2010.486939
  27. Lichten LA, Cousins RJ. 2009. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 29:153-176. https://doi.org/10.1146/annurev-nutr-033009-083312
  28. Lu HD, Wang ZQ, Pan YR, Zhou TS, Xu XZ, Ke TW 1999. Comparison of serum Zn, Cu and Se contents between healthy people and patients in high, middle and low incidence areas of gastric cancer of Fujian Province. World J Gastroenterol. 5:84-86. https://doi.org/10.3748/wjg.v5.i1.84
  29. Mann NS, Mann SK, Brawn PN, Weaver B. 1992. Effect of zinc sulfate and acetylcysteine on experimental gastric ulcer: in vitro study. Digestion. 53:108-113. https://doi.org/10.1159/000200978
  30. McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, Aizenman E. 2001. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci. 21:3303-3311.
  31. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. 2003. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 121:49-60. https://doi.org/10.1085/jgp.20028740
  32. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. 2001. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 411:590-595. https://doi.org/10.1038/35079092
  33. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 139:271-279. https://doi.org/10.1016/0022-1759(91)90198-O
  34. Romani AM, Scarpa A. 2000. Regulation of cellular magnesium. Front Biosci. 5:D720-734. https://doi.org/10.2741/Romani
  35. Runnels LW, Yue L, Clapham DE. 2001. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science. 291:1043-1047. https://doi.org/10.1126/science.1058519
  36. Santos LH, Feres CA, Melo FH, Coelho MM, Nothenberg MS, Oga S, Tagliati CA. 2004. Anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats. Braz J Med Biol Res. 37:1205-1213. https://doi.org/10.1590/S0100-879X2004000800011
  37. Sheline CT, Behrens MM, Choi DW. 2000. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J Neurosci. 20:3139-3146.
  38. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM. 2003. Regulation of vertebrate cellular $Mg^{2+}$ homeostasis by TRPM7. Cell. 114:191-200. https://doi.org/10.1016/S0092-8674(03)00556-7
  39. Sempertegui F, Diaz M, Mejia R, Rodriguez-Mora OG, Renteria E, Guarderas C, Estrella B, Recalde R, Hamer DH, Reeves PG. 2007. Low concentrations of zinc in gastric mucosa are associated with increased severity of Helicobacter pylori-induced inflammation. Helicobacter. 12:43-48.
  40. Tagliati CA, Kimura E, Nothenberg MS, Santos SR, Oga S. 1999. Pharmacokinetic profile and adverse gastric effect of zinc-piroxicam in rats. Gen Pharmacol. 33:67-71. https://doi.org/10.1016/S0306-3623(98)00267-5
  41. Troskot B, Simicevic VN, Dodig M, Rotkvic I, Ivankovic D, Duvnjak M. 1997. The protective effect of zinc sulphate pretreatment against duodenal ulcers in the rat. BioMetals. 10:325-329. https://doi.org/10.1023/A:1018332618512
  42. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. 2001. The role of zinc in caspase activation and apoptotic cell death. Biometals. 14:315-330. https://doi.org/10.1023/A:1012993017026
  43. Vallee BL, Falchuk KH. 1993. The biochemical basis of zinc physiology. Physiol Rev. 73:79-118. https://doi.org/10.2466/pr0.1993.73.1.79
  44. Vermes I, Haanen C, Reutelingsperger C. 2000. Flow cytometry of apoptotic cell death. J Immunol Methods. 243:167-190. https://doi.org/10.1016/S0022-1759(00)00233-7
  45. Volpe P, Vezu L. 1993. Intracellular magnesium and inositol 1,4,5-trisphosphate receptor: molecular mechanisms of interaction, physiology and pharmacology. Magnes Res. 6:267-274.
  46. Wang BJ, Won SJ, Yu ZR, Su CL. 2005. Free radical scavenging and apoptotic effects of cordycepin sinensis ractionated by supercritical carbon dioxide. Food Chem Toxicol. 43:543-552. https://doi.org/10.1016/j.fct.2004.12.008
  47. Wastney ME, Aamodt RL, Rumble WF, Henkin RI. 1986. Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol. 251:R398-R408.
  48. Watanabe T, Arakawa T, Fukuda T, Higuchi K, Kobayashi K. 1995. Zinc deficiency delays gastric ulcer healing in rats. Dig Dis Sci. 40:1340-1344. https://doi.org/10.1007/BF02065548
  49. Watjen W, Haase H, Biagioli M, Beyersmann D. 2002. Induction of apoptosis in mammalian cells by cadmium and zinc. Environ Health Perspect. 110:865-867.

피인용 문헌

  1. Role of transient receptor potential melastatin type 7 channel in gastric cancer vol.5, pp.2, 2011, https://doi.org/10.1016/j.imr.2016.04.004