DOI QR코드

DOI QR Code

Ecological Risk Assessment of Pesticide Residues in Agricultural Lake : Risk Quotients and Probabilistic Approach

농업용수를 공급하는 호소 수역 내 잔류 농약의 생태위해성평가 : 위해지수방법과 확률론적 방법

  • Lee, Ji-Ho (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Byung-Jun (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Sang-Won (Bio-Resources Management Division, Research Policy Bureau, Rural Development Administration) ;
  • Kim, Won-Il (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Su-Myung (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Im, Geon-Jae (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Moo-Ki (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration)
  • 이지호 (농촌진흥청 국립농업과학원 농산물안전성부) ;
  • 박병준 (농촌진흥청 국립농업과학원 농산물안전성부) ;
  • 박상원 (농촌진흥청 연구정책국 생명자원관리과) ;
  • 김원일 (농촌진흥청 국립농업과학원 농산물안전성부) ;
  • 홍수명 (농촌진흥청 국립농업과학원 농산물안전성부) ;
  • 임건재 (농촌진흥청 국립농업과학원 농산물안전성부) ;
  • 홍무기 (농촌진흥청 국립농업과학원 농산물안전성부)
  • Received : 2011.09.16
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

BACKGROUND: Pesticides concentration was monitored in 50 agricultural lakes, and ecological risk for aquatic organism was assessed using risk quotient (RQ) and probabilistic methods. METHODS AND RESULTS: Pesticides concentrations detected in 50 agricultural lakes during peak season (June and September) were in the range of $0.17{\sim}0.99{\mu}g/L$. The RQ for algae and the other species was estimated to be 0.25 and below 0.01, indicating medium risk and no risk. Oxadiazon predominantly contributed to RQ value of 99% for algae, fishes, and amphibians. In terms of hazardous concentration at 5% of species ($HC_5$), ecological risk quotients (ERQ) for oxadiazon ranged from 0.18~0.33, showing a medium risk level. Overall, the concentrations of pesticides were much lower than $HC_5$), value. Probability of combined ecological risk for pesticides ranged from 1.82% to 2.41%. CONCLUSION(s): Combined ecological risk probability did not exceed the acceptable level of 5%, indicating no ecological risk for selected aquatic species. This study suggests that regular ecological risk assessment (ERA) will be required to protect and manage an agricultural lake. Not only ERA at screening level by comparing exposure with toxic effects for aquatic species also advanced ERA technique considering species in indigenous to Korea, chronic toxicity, pulse dose, fate, and environmental factors should be required.

국내 호소 수역 50지점에서 검출빈도가 비교적 높은 4종의 농약성분에 대해 성수기와 비성수기를 구분하여 오염도를 조사하였고, 위해지수방법과 확률론적인 방법을 적용하여 조류, 물벼룩, 어류, 양서류 등의 수생 종들에 대한 생태위해성 평가를 수행하였다. 조류 종에 대해서는 중간 위해성 수준으로, 그 외 다른 수생 종들의 위해성은 낮은 위해성 기준에 비해 훨씬 낮게 산정되어 위해성이 없는 것으로 평가되었다. 조류 종에 대한 위해성은 주로 제초제인 oxadiazon 성분에 기인하였고, 어류 및 양서류에서도 높은 위해 기여도를 보여주었다. $HC_5$값을 적용한 생태위해지수 또한 oxadiazon 성분에서만 중간 위해성 수준이었고, 이 성분이 수생 종에 위해 영향을 주는 주 기여요인으로 조사되었다. 각 농약성분의 농도가 $HC_5$값에 비해 낮은 수준으로 검출되었고, 혼합된 형태의 농약성분에 대한 결합된 생태위해확률 또한 허용기준인 5% 이하로서 생태위해성이 없는 것으로 평가되었다. 결론적으로, 농업용수를 공급하는 전국 호소 수역의 관리를 위해서는 주기적인 생태위해성평가가 필요하며, 급성독성과 노출량을 비교하는 위해지수와 확률론적 기법은 기초 위해성평가이며, 우리나라 고유 생물 종을 이용한 위해성평가, 만성독성, 환경 중 거동, 환경 요인 등을 모두 고려한 보다 높은 단계의 위해성평가 기법 연구가 반드시 필요할 것으로 사료된다.

Keywords

References

  1. Aldenberg, T., Slob, W., 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data, Ecotoxicol. Environ. Safety 25, 48-63. https://doi.org/10.1006/eesa.1993.1006
  2. Chatterjee R., 2008. Pesticide triggers a food chain cascade, Environ. Sci. Technol.15, 8993.
  3. Hager, A.G., Refsell, D., 2008. Toxicity of herbicide, in: Illinois agricultural pest management handbook, pp. 267-270.
  4. Hela, D.G., Lambropoulou, D.A., Konstantinou, I.K., Albanis, T.A., 2005. Environmental monitoring and ecological risk assessment for pesticide contamination and effects in lake Pamvotis, Northwestern Greece, Environ. Toxicol. Chem. 24, 1548-1556. https://doi.org/10.1897/04-455R.1
  5. Kooijman, S.A.L.M., 1987. A safety factor for LC(50) values allowing for differences in sensitivity among species. Wat. Res. 21, 269-276. https://doi.org/10.1016/0043-1354(87)90205-3
  6. Lee, J.H., Park, B.J., Kim, J.K., Kim, W.I., Hong, S.M. Im, G.J., Hong, M.K. 2011. Risk assessment for aquatic organi는 of pesticides detected in wate phase of six major rivers in Korea. Korean J. Pesti. Sci. 15, 48-54.
  7. Lee, K.S., 2011. Behavior of pesticides in soil. Korean J. Pesti. Sci. 14, 303-317.
  8. Park, Y.K., Kim, B.S., Bae, C.H., Kim, Y.S., Park, K.H., Lee, J.B., Shin, J.S., Hong, S.S., Lee, K.S., Lee, J.J. 2008. A comparison of sensitivity of four freshwater algae to five pesticides. Korean J. Pesti. Sci. 12, 50-56.
  9. Parish, P.R. (1985). Acute toxicity tests. In: Fundamentals of Aquatic Toxicology, G.M., Rand and S.R., Petrocelli, (Eds.), Hemisphere Publishing Corporation, N. York, pp.31-57.
  10. Qu, C.S., Chen, W., Bi, J., Huang, L., Li, F.Y., 2011. Ecological risk assessment of pesticide residues in Taihu lake wetland China. Ecol. Model. 222, 287-292. https://doi.org/10.1016/j.ecolmodel.2010.07.014
  11. Sanchez-Bayo, F., Baskaran, S., Kennedy, I.R., 2002. Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agric. Ecosyst. Environ. 91, 37-57. https://doi.org/10.1016/S0167-8809(01)00258-4
  12. Schriever, C.A., Liess, M., 2007. Mapping ecological risk of agricultural pesticide runoff, Sci. Total Environ,384, 264-279. https://doi.org/10.1016/j.scitotenv.2007.06.019
  13. Slater, D., Jones, H., 1999. Environmental risk assessment and the environment agency, J. Hazard. Mater. 65, 77-91. https://doi.org/10.1016/S0304-3894(98)00256-8
  14. Solomon, K.R., Sibley, P., 2002. New concepts in ecological risk assessment: where do we go from here?, Mar. Pollut. Bull. 44, 279-285. https://doi.org/10.1016/S0025-326X(01)00252-1
  15. Steen, R.J.C.A., Leonards, P.E.G., Brinkman, U.A.T., Barcelo, D., Tronczynski, J., Albanis, T.A., Cofino W.P., 1999. Ecological risk assessment of agrochemicals in European estuaries, Environ. Toxicol. Chem.18, 1574-1581. https://doi.org/10.1002/etc.5620180733
  16. U.S. Environmental Protection Agency, 1992. Framework for ecological risk assessment, U.S. Environmental Protection Agency, Washington, DC, EPA/630/R-92/001.
  17. Van der Werf, H.M.G., 1996. Assessing the impact of pesticides on the environment, Agric. Ecosyst. Environ. 60, 81-96. https://doi.org/10.1016/S0167-8809(96)01096-1
  18. Van Straalen, N.M., Denneman, C.A.J., 1989. Ecotoxicological evaluation of soil-quality criteria, Ecotoxicol. Environ. Safety 18, 241-251. https://doi.org/10.1016/0147-6513(89)90018-3
  19. Wang, B., Yu, G., Huang, J., Hu, H., 2008. Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches, Ecotoxicol.17, 716-724. https://doi.org/10.1007/s10646-008-0220-2
  20. Warren, N., Allan, I.J., Carter, J.E., House, W.A., Parker, A., 2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments -A review, Appl. Geochem. 18, 159-194. https://doi.org/10.1016/S0883-2927(02)00159-2