DOI QR코드

DOI QR Code

Spatio-Temporal Variations in Groundwater Recharge in the Jincheon Region

진천지역 지하수 함양량의 시공간적 변동특성

  • Chung, Il-Moon (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Na, Han-Na (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Lee, Deok-Su (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Kim, Nam-Won (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jeong-Woo (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jae-Myung (Groundwater & Groundwater Investigation Team, Korea Water Resources Corporation)
  • 정일문 (한국건설기술연구원 수자원연구실) ;
  • 나한나 (한국건설기술연구원 수자원연구실) ;
  • 이덕수 (한국건설기술연구원 수자원연구실) ;
  • 김남원 (한국건설기술연구원 수자원연구실) ;
  • 이정우 (한국건설기술연구원 수자원연구실) ;
  • 이재명 (한국수자원공사 조사기획처 지하수지반사업팀)
  • Received : 2011.09.23
  • Accepted : 2011.11.22
  • Published : 2011.12.30

Abstract

Because groundwater recharge shows spatial-temporal variability due to climatic conditions, it is necessary to investigate land use and hydrogeological heterogeneity, and estimate the spatial variability in the daily recharge rate based on an integrated surface-groundwater model. The integrated SWAT-MODFLOW model was applied to compute physically based daily groundwater recharge in the Jincheon region. The temporal variations in estimated recharge were calibrated using the observed groundwater head at several National Groundwater Monitoring Stations and at automatic groundwater-monitoring sites constructed during the Basic Groundwater Investigation Project (2009-2010). For the whole Mihocheon watershed, including the Jincheon region, the average groundwater recharge rate is estimated to be 20.8% of the total rainfall amount, which is in good agreement with the analytically estimated recharge rate. The proposed methodology will be a useful tool in the management of groundwater in Korea.

지하수 함양량은 기후조건, 토지이용, 수리지질학적 비균질성에 의해 시공간적인 변동성을 나타내는 수문량이므로 통합지표수-지하수 모델 기반의 시공간변동성을 갖는 일단위 함양량의 추정이 필요하다. 진천지역을 대상으로 SWAT-MODFLOW 통합모형이 일단위 함양량 추정에 사용되었으며 추정된 함양량의 시변성은 국가 지하수 관측망과 기초조사 기간(2009-2010)중에 설치된 자동관측망 자료와 잘 부합하는 것을 확인하였다. 진천지역을 포함한 미호천 유역 평균 지하수 함양률은 강수대비 20.8%로 나타났는데 이는 해석적 방법인 기저유출 분리법의 결과와도 잘 일치하였다. 통합모델링 기반의 함양량 산정은 국가 지하수 관리를 위해 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. 국토해양부, 2007, 지하수 관리 기본계획 보고서, 314p.
  2. 국토해양부, 한국수자원공사, 2010, 진천지역 지하수 기초조사 보고서 , 207p.
  3. 김종태, 김만일, 정일문, 김남원, 정교철, 2009, 지하댐 건설에 따른 유역내 지하수위 변화 특성 해석, 지질공학, 19(2), 227-233.
  4. 김종태, 정일문, 김남원, 정교철, 2011, SWAT-MODFLOW를 이용한 영덕 오십천의 지하댐 타당성 연구, 지질공학, 21(2), 179-186.
  5. 정일문, 김지태, 나한나, 김남원, 이정우, 2011b, 미호천유역의 지표수-지하수 통합 수문해석, 2011년 대한지질공학회 춘계학술대회 논문집, 73-76.
  6. 정일문, 이정우, 김남원, 2011a, 지표수-지하수 통합모형을 이용한 무심천 유역의 지하수 개발가능량 산정, 자원환경지질, 44(5) 433-442.
  7. Arnold, J. G., Allen, P. M., and Bernhardt, G., 1993, A comprehensive surface-groundwater flow model, Journal of Hydrology, 142, 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  8. Chung, I. M., Kim, N. W., Lee, J., and Sophocleous, M., 2010, Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea, Hydrogeology Journal, 18, 1253-1264. https://doi.org/10.1007/s10040-010-0593-1
  9. Kim, N.W., Chung, I.M., Kim, C., Lee, J., and Lee, J.E., 2009, Development and applications of SWAT-K (Korea). In: Soil and Water Assessment Tool (SWAT) Global Applications (Eds. J. Arnold et al.), Special Publication No.4, World Association of Soil and Water Conservation, Bangkok, Thailand, 223-252.
  10. Kim, N. W., Chung, I. M., Won, Y. S., and Arnold, J. G., 2008, Development and application of the integrated SWAT-MODFLOW model, Journal of Hydrology, 356, 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  11. McDonald, M.G., and Harbaugh., A.W. 1988, A Modular Three-Dimensional Finite- Difference Ground-water Flow Model. U.S. Geological Survey Techniques of Water Resources Investigations Report Book 6, Chapter AI, 528p.
  12. Memon, B. A., 1995, Quantitative analysis of springs. Environmental Geology 26, 111-120.
  13. Nathan, R.J. and McMahon, T.A., 1990, Evaluation of automated techniques for base flow and recession analyses, Water Resources Research 26, 1465-1473
  14. Neitsch, S. L., Arnold, J .G., Kiniry, J. R., and Williams, J. R., 2001, Soil and Water Assessment Tool Version 2000, Agricultural Research Service. Texas Agricultural Experiment Station. Temple, Texas, 412p.
  15. Sangrey, D. A., Harrop-Williams, K. O., and Klaiber, J. A., 1984, Predicting groundwater response to precipitation, ASCE, Journal of Geotechnical Engineering, 11, 957-975.
  16. Venetis, C., 1962, A study of recession of unconfined aquifers. Bulletins of International Association of Hydrololgical Science, 14, 119-125.
  17. Zhang, Y.-K. and Li, Z., 2006, Effect of temporally correlated recharge on fluctuations of groundwater levels, Water Resources Research, 42, W10412, doi:10.1029/2005WR004828.

Cited by

  1. Evaluation of Percolation Rate of Bedrock Aquifer in Coastal Area vol.14, pp.1, 2016, https://doi.org/10.7733/jnfcwt.2016.14.1.21
  2. Development of Analyzing Model of Groundwater Table Fluctuation(I): Theory of Model vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2277
  3. Groundwater recharge analysis and comparison using hybrid water-table fluctuation method and groundwater modeling: a case of Gangcheon basin in Yeoju City vol.54, pp.2, 2018, https://doi.org/10.14770/jgsk.2018.54.2.169
  4. 시설농업단지에서 HydroGeoSphere 모델을 이용한 지하수 유동 및 물수지 분석 vol.27, pp.3, 2017, https://doi.org/10.9720/kseg.2017.3.313
  5. Determining Optimum Pumping Rates of Groundwater in Ttansum Island Related to Riverbank Filtration vol.27, pp.10, 2011, https://doi.org/10.5322/jesi.2018.27.10.831