DOI QR코드

DOI QR Code

Analysis of Phenolic Compounds in Sorghum, Foxtail Millet and Common Millet

  • Jeon, Hyun-Seok (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Chung, Ill-Min (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Ma, Kyung-Ho (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Eun-Hye (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Yong, Soo-Jung (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Ahn, Joung-Kuk (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
  • Received : 2011.08.06
  • Accepted : 2011.11.21
  • Published : 2011.12.30

Abstract

The cereal grain crops have strong flexibility against adverse environment and they have various functional compounds. The objective of the present study was to screen phenolic compounds in sorghum [Sorghum bicolor (L.) Moench], foxtail millet (Setaria italica), common millet (Panicum miliaceum L.) by high performance liquid chromatography (HPLC) with photodiode array (PDA) detector. Sorghum contained the highest amount of phenolic compounds among three different crops (sorghum, foxtail millet, common millet). Especially Moktaksusu showed the highest amount of phenolic compounds concentrations and biggest regional differences. The comparison of average phenolic compounds in sorghums by regions showed order to Milyang ($963.3\;{\mu}g{\cdot}g^{-1}$), Yeongyang ($923.1\;{\mu}g{\cdot}g^{-1}$), Gijang ($831.3\;{\mu}g{\cdot}g^{-1}$) and Bonghwa ($735.6\;{\mu}g{\cdot}g^{-1}$). Among the sorghum cultivars, Moktaksusu ($1407.9\;{\mu}g{\cdot}g^{-1}$) had the highest concentration of phenolic compounds. The average phenolic compounds of foxtail millets showed similar amount among Milyang ($319.0\;{\mu}g{\cdot}g^{-1}$), Gijang ($288.1\;{\mu}g{\cdot}g^{-1}$) and Bonghwa ($281.9\;{\mu}g{\cdot}g^{-1}$) areas. The phenolic compounds of Yeongyang ($246.6\;{\mu}g{\cdot}g^{-1}$) slightly low and that showed similar concentrations among three different regions. The concentration of phenolic compounds in foxtail millets, Chungchajo ($335.6\;{\mu}g{\cdot}g^{-1}$) showed the highest concentrations. The average phenolic compounds of common millets showed the highest concentrations in Milyang ($305.5\;{\mu}g{\cdot}g^{-1}$), Bonghwa ($262.0\;{\mu}g{\cdot}g^{-1}$), Gijang ($195.1\;{\mu}g{\cdot}g^{-1}$), Yeongyang ($237.2\;{\mu}g{\cdot}g^{-1}$) in decreasing order. The concentration of phenolic compounds of common millets was the highest in the Norangchalgijang ($337.0\;{\mu}g{\cdot}g^{-1}$), Hwanggumgijang ($250.0\;{\mu}g{\cdot}g^{-1}$) was also relatively higher than others. The results of this study will provide basic information for breeding sorghums, foxtail millets and common millets with higher phenolic compound concentrations.

Keywords

References

  1. Block, G., B. Patterson, and A. Subar. 1992. Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutrition and Cancer 18 : 1-29. https://doi.org/10.1080/01635589209514201
  2. Castelluccio, C., G. Paganga, N. Melikian, G. P. Bolwell, J. B. Pridham, J. Dampson, and C. A. Rice-Evans. 1995. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 368 : 188-192. https://doi.org/10.1016/0014-5793(95)00639-Q
  3. Davis, J. M., E. A. Murphy, M. D. Carmichel, and B. Davis. 2009. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. 296 : 1071-1077.
  4. Dykes, L. and L. W. Rooney. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52 : 105-111.
  5. Hahn, D. H., J. M. Faubion, and L. W. Rooney. 1983. Sorghum phenolic acids, their high performance liquid chromatography separation and their relation to fungal resistance. Cereal Chem. 60 : 255-259.
  6. Harbone, J. B. and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochem. 55 : 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  7. Huang, M. T. and T. Ferraro. 1992. Phenolic compounds in food and cancer prevention. in phenolic compounds in food and their effects on health. II: Antioxidants and cancer prevention. American Cancer Society; Washington, DC. 507 : 8-34.
  8. Jacob, R. A. and B. J. Burri. 1996. Oxidative damage and defense. Am. J. Clin. Nutr. 63 : 985-990.
  9. Jones, J. M. 2006. Grain-based foods and health. Cereal Foods World 51 : 108-113.
  10. Kehrer, J. P. 1993. Free radicals as medicators of tissue injury and disease. Critical Reviews in Toxicology 23 : 21-48. https://doi.org/10.3109/10408449309104073
  11. Kil, H. Y., E. S. Seong, B. K. Ghimire, I. M. Chung, S. S. Kwon, E. J. Goh, K. Heo, M. J. Kim, J. D. Lim, D. Lee, and C. Y. Yu. 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem. 115 : 1234-1239. https://doi.org/10.1016/j.foodchem.2009.01.032
  12. Kim, E. H. S. H. Kim, J. I. Chung, H. Y. Chi, J. A. Kim, and I. M. Chung. 2006. Analysis of phenolic compounds and isoflavones in soybean seeds [Glycine max (L.) Merrill] and sprouts grown under different conditions. Eur. Food Res. Technol. 222 : 201-208. https://doi.org/10.1007/s00217-005-0153-4
  13. Kweon, M. H. H. J. Hwang, and H. C. Sung. 2001. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem. 49 : 4646-4655. https://doi.org/10.1021/jf010514x
  14. Lee, J. Y., L. F. Wang, J. H, Kaik, and S. K. Park. 2007. Changes in volatile compounds of green tea during growing season at different culture areas. Korean J. Food Sci. Technol. 39 : 246-254.
  15. Lee, S. J., P. Seguin, J. J. Kim, H. I. Moon, H. M. Ro, E. H. Kim, S. H. Seo, E. Y. Kang, J. K. Ahn, and I. M. Chung. 2010. Isoflavones in Korean soybeans differing in seed coat and cotyledon color. Journal of Food Composition and Analysis 23 : 160-165. https://doi.org/10.1016/j.jfca.2009.08.005
  16. Maga, J. A. 1978. Simple phenol and phenolic compounds in food flavor.Critical Reviews in Food Science and Nutrition 10 : 323-372. https://doi.org/10.1080/10408397809527255
  17. Maggiolini, M., A. G. Recchia, D. Bonofiglio, S. Catalano, A. Vivacqua, A. Carpino, V. Rago, R. Rossi, and S. Ando. 2005. The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor in human breast cancer cells. Journal of Molecular Endocrinology 35 : 269-281. https://doi.org/10.1677/jme.1.01783
  18. Murakami, A., H, Ashida, and J. Terao. 2008. Multitargeted cancer prevention by quercetin. Cancer Lett. 269 : 315-25. https://doi.org/10.1016/j.canlet.2008.03.046
  19. Naczk, M. and F. Shaahidi. 2004. Extraction and analysis of phenolics in food. Journal of Chromato.graphy A 1054 : 95-111. https://doi.org/10.1016/j.chroma.2004.08.059
  20. Naim, M., U. Zehavi, S. Nagy, and R. I. Rouseff. 1992. Hydroxycinnamic acids as off-flavor precursors in citrus fruits and their products. in phenolic compounds in food and their effects on health. American Chemical Society ; Washington, DC 14 : 180-191.
  21. Nothling, U., S. P. Murphy, L. R. Wilkens, B. E. Henderson, and L. N. Kolonel. 2007. Flavonols and pancreatic cancer risk : the multiethnic cohort study. American Journal of Epidemiology 166 : 924-931. https://doi.org/10.1093/aje/kwm172
  22. Paganga, G., N, Miller, and C. A. Rice-Evans. 1999. The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radical Res. 30 : 153-162. https://doi.org/10.1080/10715769900300161
  23. Peleg, H., M. Naim, R. I. Rouseff, and U. Zehavi. 1991. Distribution of bound and free phenolic compounds in oranges (Citrus sinensis) and grapefruits (Citrus paradisi). J. Sci. Food Agric. 57 : 417-426. https://doi.org/10.1002/jsfa.2740570312
  24. Powles, J. W. and A. R. Ness. 1996. Fruit and vegetables. and cardoivascular disease: A review. International Journal of Epidemiology 26 : 1-13.
  25. Rebecca, J. R. 2003. Phenolic compounds in foods : An overview of analytical methodology. J. Agric. Food Chem. 51 : 2866-2887.
  26. Rudikovskaya, E. G., G. A. Fedorova, L. V. Dudareva, L. E. Makarova, and A. V. Rudikovskii. 2008. Effect of Growth Temperature on the Composition of Phenols in Pea Roots. Russian Jornal of Plant Physiology 55 : 712-715. https://doi.org/10.1134/S1021443708050178
  27. Schindler, R. and R. Mentlein. 2006. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. Journal of Nutrition 136 : 1477-1482.
  28. Sharma, S., J. D. Stutzman, G. J. Kelloff, and V. E. Steele. 1994. Screening of potential chemoprotective agents using biochemical markers of carcinogenesis. Cancer Res. 54 : 5848-5855.
  29. Silvina, B., L. and G. F. Cesar. 1998. (+)Catechin prevents human plasma oxidation. Free adical Biology and Medicine 24 : 435-441. https://doi.org/10.1016/S0891-5849(97)00276-1
  30. Stohs, H. J. 1995. The role of free radicals in toxicity and disease. Journal of Basic and Clinical Physiology and Pharmacology 6 : 205-222.
  31. Tan, S. C. 2000. Determinants of eating quality in fruits and vegetables. Proceedings of the Nutrition Society of Australia 24 : 183-190.
  32. Thomas, M. J. 1995. The role of free radicals and antioxidant: how do we know that they are working. Critical Reviews in Food Science and Nutrition 35 : 21-39. https://doi.org/10.1080/10408399509527683
  33. Vallejo, F., F. A. Tomas-Barberan, and C. Garcia-Viguera. 2003. Effect of climatic and sulphur compounds and vitamin C, in the inflorescences of eight broccoli cultivars. Eur. Food Res. Technol. 216 : 395-401.
  34. Veteli, T. O., K. Kuokkanen, R. Julkunen-tiitto, H. Roinenen, and J. Tahvanainen. 2002. Effects of elevated $CO_{2}$ and temperature on plant growth and herbivore defensive chemistry. Global Change Biology 8 : 1240-1252. https://doi.org/10.1046/j.1365-2486.2002.00553.x
  35. Yao, L. H., Y. M. Jian, J. Shi, F. A. Tomas-Barberan, N. Datta, R. Singanusong, and S. S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods for Human Nutrition 59 : 113-122. https://doi.org/10.1007/s11130-004-0049-7

Cited by

  1. Sorghum polyphenol suppresses the growth as well as metastasis of colon cancer xenografts through co-targeting jak2/STAT3 and PI3K/Akt/mTOR pathways vol.15, 2015, https://doi.org/10.1016/j.jff.2015.03.020
  2. Peptide Profiling and Selection of Specific-Expressed Peptides in Hypoglycemic Sorghum Seed using SELDI-TOF MS vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.252
  3. Variation of Fractionated Protein Content by Solubility in Korean Local Sorghum Seed vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.245
  4. 조(Setaria italica Beauv.)의 품종별 파종시기에 따른 이화학 특성과 항산화 활성 vol.31, pp.4, 2011, https://doi.org/10.9799/ksfan.2018.31.4.449