DOI QR코드

DOI QR Code

Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae (Department of Earth Science Education / Research Institute of Oceanography, Seoul National University) ;
  • Lee, Eun-Young (Department of Science Education, Seoul National University) ;
  • Chung, Sung-Rae (Satellite Analysis Division, National Meteorology Satellite Center, Korea Meteorology Association) ;
  • Sohn, Eun-Ha (Satellite Analysis Division, National Meteorology Satellite Center, Korea Meteorology Association)
  • Received : 2011.10.20
  • Accepted : 2011.12.04
  • Published : 2011.12.30

Abstract

Sea Surface Temperatures (SSTs) using the equations of NOAA (National Oceanic and Atmospheric Administration) / NESDIS (National Environmental Satellite, Data, and Information Service) were validated over the seas around Korea with satellite-tracked drifter data. A total 1,070 of matchups between satellite data and drifter data were acquired for the period of 2009. The mean rms errors of Multi- Channel SSTs (MCSSTs) and Non-Linear SSTs (NLSSTs) were evaluated to, in most of the cases, less than $1^{\circ}C$. However, the errors revealed dependencies on atmospheric and oceanic conditions. For the most part, SSTs were underestimated in winter and spring, whereas overestimated in summer. In addition to the seasonal characteristics, the errors also presented the effect of atmospheric moist that satellite SSTs were estimated considerably low ($-1.8^{\circ}C$) under extremely dry condition ($T_{11{\mu}m}-T_{12{\mu}m}$ < $0.3^{\circ}C$), whereas the tendency was reversed under moist condition. Wind forcings induced that SSTs tended to be higher for daytime data than in-situ measurements but lower for nighttime data, particularly in the range of low wind speeds. These characteristics imply that the validation of satellite SSTs should be continuously conducted for diverse regional applications.

Keywords

References

  1. Bernstein, R. L., 1982. Sea surface temperature estimation using the NOAA-6 Satellite Advanced Very High Resolution Radiometer, Journal of Geophysical Research, 87(C12): 9455-9465. https://doi.org/10.1029/JC087iC12p09455
  2. Donlon, C. J., T. J. Nightingale, T. Sheasby, J. Turner, I. S. Robinson, and W. J. Emergy, 1999. Implications of the oceanic thermal skin temperature deviation at high wind speed, Geophysical Research Letters, 26(16): 2505-2508. https://doi.org/10.1029/1999GL900547
  3. Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010. Global surface temperature change, Reviews of Geophysics, 48: RG4004. https://doi.org/10.1029/2010RG000345
  4. Kilpartrick, K. A., G. P. Podesta, and R. Evans, 2001. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database, Journal of Geophysical Research, 106(C5): 9179-9197. https://doi.org/10.1029/1999JC000065
  5. Lee, M. A., Y. Chang, F. Sakaida, H. Kawamura, C. H. Cheng, J. W. Chan, and I. Huang, 2005. Validation of Satellite-Derived Sea Surface Temperatures for Waters around Taiwan, Terrestrial, Atmospheric and Oceanic sciences, 16(5): 1189-1204. https://doi.org/10.3319/TAO.2005.16.5.1189(O)
  6. McClain, E. P., W. G. Pichel, and C. C. Walton, 1985. Comparative performance of AVHRRbased Multichannel sea surface temperatures, Journal of Geophysical Research, 90(C6): 11609-11618. https://doi.org/10.1029/JC090iC06p11609
  7. McClain, E. P., 1989. Global sea surface temperatures and cloud clearing for aerosol optical depth estimates, International Journal of Remote Sensing, 10(4-5): 763-769. https://doi.org/10.1080/01431168908903917
  8. McMillin, L. M. and D. S. Crosby, 1984. Theory and Validation of the Multiple Window Sea Surface Temperature Technique, Journal of Geophysical Research, 89(C3): 3655-3661. https://doi.org/10.1029/JC089iC03p03655
  9. Goodrum, G., K. B. Kidwell, and W. Winston, 2007. NOAA KLM user's guide, Technical Report, National Environmental Satellite, Data, and Information Services (NESDIS).
  10. Park, K. A., J. Y. Chung, K. Kim, and B. H. Choi, 1994. A study on comparison of satellite drifter temperature with satellite derived sea surface temperature of NOAA/NESDIS, Korean Journal of Remote Sensing, 11(2): 83-107.
  11. Park, K. A., J. Y. Chung, K. Kim, B. H. Choi, and D. K. Lee, 1999. Sea Surface Temperature Retrievals Optimized to the East Sea (Sea of Japan) using NOAA/AVHRR Data, Marine Technology Society Journal, 33(1): 23-35. https://doi.org/10.4031/MTSJ.33.1.4
  12. Park, K. A., J. Y. Chung, K. Kim, and P. C. Cornillon, 2005. Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea, Geophysical Research Letters, 32: L05610. https://doi.org/10.1029/2004GL022197
  13. Park, K. A., F. Sakaida, and H. Kawamura, 2008. Oceanic Skin-Bulk Temperature Difference through the Comarison of Satellite-Observed Sea Surface Temperature and In-Site Measurements, Korean Journal of Remote Sensing, 24(4): 273-287. https://doi.org/10.7780/kjrs.2008.24.4.273
  14. Prabhakara, C., G. Dalu, and V. G. Kunda, 1974. Estimation of Sea Surface Temperature from Remote Sensing in the 11 $\mu$m to 13 $\mu$m Window, Journal of Geophysical Research, 79(33): 5039-5044. https://doi.org/10.1029/JC079i033p05039
  15. Sakaida, F. and H. Kawamura, 1992. Estimation of sea surface temperatures around Japan using the advanced very high resolution radiometer, (AVHRR)/NOAA-11, Journal of Oceanography, 48(2): 179-192. https://doi.org/10.1007/BF02239004
  16. Saunders, R. W. and K. T. Kriebel, 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data, International Journal of Remote Sensing, 9(1): 123-150. https://doi.org/10.1080/01431168808954841
  17. Strong, A. and E. P. McClain, 1984. Improved ocean surface temperatures from space-Comparisons with drifting buoys, Bulletin of the American Meteorological Society, 65(2): 138-139. https://doi.org/10.1175/1520-0477(1984)065<0138:IOSTFS>2.0.CO;2
  18. Vazquez, J., A V. Tran, R. Sumagaysay, E. Smith, S. Digby, and K. Perry, 1994. NOAA/NASA AVHRR Oceans Pathfinder Sea Surface Temperature Data Set User's Handbook.
  19. Walton, C. C., 1988. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data, Journal of Applied Meteorology, 27: 115-124. https://doi.org/10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2
  20. Walton, C. C., W. G. Pichel, J. F. Sapper, and D. A. May, 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites, Journal of Geophysical Research, 103(C12): 27999-28012. https://doi.org/10.1029/98JC02370
  21. Wang, B., R. Wu, and X. Fu, 2000. Pacific-East Asian Teleconnection: How Does ENSO Affect East Asian Climate?, Journal of Climate, 13: 1517-1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
  22. Wang, B. and Q. Zhang, 2002. Pacific-East Asian Teleconnection. Part II: How the Philippine Sea Anomalous Anticyclone is Established during El Nino Development, Journal of Climate, 15: 3252-3265. https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
  23. Yashayaev, I. M. and I. I. Zveryaev, 2001. Climate of the seasonal cycle in the North Pacific and the North Atlantic oceans, International Journal of Climatology, 21(4): 401-417. https://doi.org/10.1002/joc.585
  24. Zavody, A. M., C. T. Mutlow, and D. T. Llewellyn-Jones, 2000. Cloud Clearing over the Ocean in the Processing of Data from the Along-Track Scanning Radiometer (ATSR), Journal of Atmospheric and Oceanic Technology, 17: 595-615. https://doi.org/10.1175/1520-0426(2000)017<0595:CCOTOI>2.0.CO;2

Cited by

  1. The Last Frontier: Catch Records of White Sharks (Carcharodon carcharias) in the Northwest Pacific Ocean vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0094407
  2. Long-term comparison of satellite and in-situ sea surface temperatures around the Korean Peninsula vol.50, pp.1, 2015, https://doi.org/10.1007/s12601-015-0009-1
  3. Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.15
  4. Evaluating a satellite-based sea surface temperature by shipboard survey in the Northwest Indian Ocean vol.35, pp.11, 2016, https://doi.org/10.1007/s13131-016-0847-4
  5. Impact of an interactive ocean on numerical weather prediction: A case of a local heavy snowfall event in eastern Korea vol.121, pp.14, 2016, https://doi.org/10.1002/2016JD024763
  6. Sensitivity analysis of satellite-retrieved SST using IR data from COMS/MI vol.29, pp.6, 2011, https://doi.org/10.7780/kjrs.2013.29.6.1
  7. Validation of Significant Wave Height from Satellite Altimeter in the Seas around Korea and Error Characteristics vol.29, pp.6, 2011, https://doi.org/10.7780/kjrs.2013.29.6.6
  8. Semi-annual cycle of sea-surface temperature in the East/Japan Sea and cooling process vol.35, pp.11, 2011, https://doi.org/10.1080/01431161.2014.916437
  9. Effects of GSICS correction on estimation of sea surface temperature using COMS data vol.36, pp.4, 2011, https://doi.org/10.1080/01431161.2015.1007249
  10. NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea vol.8, pp.10, 2011, https://doi.org/10.1080/17538947.2014.937363
  11. Indigenized Indian Drifting Buoys with INSAT Communication for Ocean Observations vol.145, pp.None, 2017, https://doi.org/10.1016/j.oceaneng.2017.08.054