2차원 지질시간 규모 수치지형발달모형의 개발

Development of a 2 Dimensional Numerical Landscape Evolution Model on a Geological Time Scale

  • 변종민 (서울대학교 사회교육연구소) ;
  • 김종욱 (서울대학교 지리교육과)
  • Byun, Jong-Min (Research Institute for Social Science, Seoul National University) ;
  • Kim, Jong-Wook (Department of Geography Education, Seoul National University)
  • 투고 : 2011.09.01
  • 심사 : 2011.12.19
  • 발행 : 2011.12.31

초록

컴퓨터 기술의 발전으로 인해 근래 들어 수치지형발달모형을 개발하고 이를 이용하여 다양한 관점에서 지형발달과정의 역동성을 파악하기 위한 시도들이 활발하게 행해졌다. 하지만 국내에서는 수치지형발달모형을 활용하거나 개발하는 시도가 거의 없었다. 이에 본 연구에서는 2차원상에서 지질시간 규모의 지형발달을 모의하는 수치지형발달모형을 개발하고 이의 유용성을 확인해 보았다. 개발된 모형은 지표 구성물질을 기반암과 이동 가능한 토양으로 구분하고 토양층의 두께를 모의하기 위해 기반암 풍화를 포함한다. 이를 통해 사면에서는 운반제어환경뿐만이 아니라 풍화제어환경도 모의 가능하다. 또한 토양포행과 같은 사면에서의 점진적인 물질이동과는 별개로 활동(landslide) 역시 주요한 지형형성작용으로 포함한다. 그리고 하천 운반력이 하상물질의 양보다 큰 곳에서는 기반암 하상 침식이 발생하여 분리제어환경도 모의한다. 한편 무한 유향 알고리듬을 이용하여 흐름을 분배하기 때문에 최대하부 경사 유향 알고리듬을 이용할 때 나타나는 흐름 분배상의 문제점을 줄일 수 있다. 개발된 모형을 이용한 모의실험 결과, 본 모형은 지질시간 규모의 지형발달과정을 비교적 합리적으로 모의하였다.

Advances in computer technology have enabled us to develop and use numerical landscape evolution models (NLEMs) for exploring the dynamics of geomorphic system from a variety of viewpoints which previously could have not been taken. However, as of yet there have been no trials using or developing NLEMs in Korea. The purpose of this research is to develop a 2 dimensional NLEM on a geological time scale and evaluate its usefulness. The newly developed NLEM (ND-NLEM) treats bedrock weathering as one of the major geomorphic processes and attempts to simulate the thickness of soil. As such it is possible to model the weathering-limited as well as the transport-limited environment on hillslopes. Moreover the ND-NLEM includes not only slow and continuous mass transport like soil creep, but also rapid and discrete mass transport like landslides. Bedrock incision is simulated in the ND-NLEM where fluvial transport capacity is large enough to move all channel bed loads, such that ND-NLEM can model the detachment-limited environment. Furthermore the ND-NLEM adopts the D-infinity algorithm when routing flows in the model domain, so it reduces distortion due to the use of the steepest descent slope flow direction algorithm. In the experiments to evaluate the usefulness of the ND-NLEM, characteristics of the channel network observed from the model results were similar to those of the case study area for comparison, and the hypsometry curve log during the experiment showed rational evidence of landscape evolution. Therefore, the ND-NLEM is shown to be useful for simulating landscape evolution on a geological time scale.

키워드

참고문헌

  1. Ahnert, F., 1976, Brief description of a comprehensive three-dimensional process-response model of landform development, Zeitschrift fur Geomorphologie Supplementband, 25, 29-49.
  2. Ahnert, F., 1996, The point of modelling geomorphological systems, In McCann, S. B., and Ford, D. C., editors, Geomorphology sans frontieres, John Willey & Sons, 91-113.
  3. Anderson, R. S., 2002, Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46(1-2), 35-58. https://doi.org/10.1016/S0169-555X(02)00053-3
  4. Anderson, R. S. and Anderson, S. P., 2010, Geomorphology: The mechanics and chemistry of landscapes, Cambridge University Press.
  5. Andrews, E. D., 1980, Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming, Journal of Hydrology, 46(3-4), 311-330. https://doi.org/10.1016/0022-1694(80)90084-0
  6. Beaumont, C., Fullsack, P., and Hamilton, J., 1992, Erosional control of active compressional orogens, in Thrust Tectonics, McClay, K. R. (ed), pp. 1-18, Chapman & Hall.
  7. Bogaart, P. W., Tucker, G. E., and de Vries, J. J., 2003, Channel network morphology and sediment dynamics under alternating periglacial and temperate regimes: A numerical simulation study, Geomorphology, 54(3-4), 257-277. https://doi.org/10.1016/S0169-555X(02)00360-4
  8. Byun, J. M. and Kim, J. W., 2009, The influence of the infinitive flow direction algorithm and Horn slope algorithm on the topographic index and hydrological responses of the TOPMODEL, Journal of the Korean Geographical Society, 44(3), 207-233 (in Korean).
  9. Byun, J., 2011a, Development and application of a numerical landscape evolution model to understand the uplift history of the Korean Peninsula, Ph.D. Dissertation, Seoul National University (in Korean).
  10. Byun, J., 2011b, Theoretical framework for application and development of two-dimensional numerical landscape evolution models on a geological time scale, Journal of the Korean Geographical Society, 46(3), 331-350 (in Korean).
  11. Champel, B., van der Beek, P., Mugnier, J.-L., and Leturmy, P., 2002, Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature, Journal of Geophysical Research, 107(B6), 2111. https://doi.org/10.1029/2001JB000578
  12. Chorley, R. J., 1957, Illustrating the laws of morphometry, Geological Magazine, 94(2), 140-150. https://doi.org/10.1017/S0016756800068412
  13. Coulthard, T. J., Macklin, M. G., and Kirkby, M. J., 2002, A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surface Processes and Landforms, 27(3), 269-288. https://doi.org/10.1002/esp.318
  14. Davis, W. M., 1899, The Geographical Cycle, The Geographical Journal, 14(5), 481-504. https://doi.org/10.2307/1774538
  15. Densmore, A. L., Ellis, M. A., and Anderson, R. S., 1998, Landsliding and the evolution of normal-faultbounded mountains, Journal of Geophysical Research B: Solid Earth, 103(7), 15203-15219. https://doi.org/10.1029/98JB00510
  16. Dietrich, W. E., Wilson, C. J., Montgomery, D. R., McKean, J. and Bauer, R., 1992, Erosion thresholds and land surface morphology, Geology, 20, 675-679. https://doi.org/10.1130/0091-7613(1992)020<0675:ETALSM>2.3.CO;2
  17. Dietrich, W. E., Wilson, C. J., Montgomery, D. R. and McKean, J., 1993, Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model, Journal of Geology, 101, 259-278. https://doi.org/10.1086/648220
  18. Dury, G. H., 1961, Bankfull discharge: An example of its statistical relationships, Hydrological Sciences Journal, 6, 48-55. https://doi.org/10.1080/02626666109493230
  19. Gilbert, G., 1877, Report on the Geology of the Henry Mountains, Washington.
  20. Gilbert, G., 1909, The convexity of hilltops, The Journal of Geology, 17, 344-350. https://doi.org/10.1086/621620
  21. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C., 1997, The soil production function and landscape equilibrium, Nature, 388(664), 358-361. https://doi.org/10.1038/41056
  22. Heimsath, A. M., Fink, D., and Hancock, G. R., 2009, The 'humped' soil production function: Eroding Arnhem land, Australia, Earth Surface Processes and Landforms, 34(12), 1674-1684. https://doi.org/10.1002/esp.1859
  23. Holmgren, P. B. and Rose, C. W., 1994, Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation, Hydrological Processes, 8(4), 327-334. https://doi.org/10.1002/hyp.3360080405
  24. Howard, A. D. and Kerby, G., 1983, Channel changes in badlands, Geological Society of America Bulletin, 94(6), 739-752. https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2
  25. Howard, A. D., 1994, A detachment-limited model of drainage basin evolution, Water Resources Research, 30(7), 2261-2285. https://doi.org/10.1029/94WR00757
  26. Horton, R. E., 1945, Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 56(3), 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  27. Kim, I. S., 1992, Origin and tectonic evolution of the East Sea(Sea of Japan) and the Yansan fault system: A new synthetic interpretation, Journal of Geological Society of Korea, 28(1), 84-109 (in Korean).
  28. Kim, J. W., 1989, Introduction to the method of the functional geomorphology, Journal of Geography Education, 22, 15-27 (in Korean).
  29. Kim, J. W., 1991, Functional relationship among different factors of fluvial geomorphology, Journal of the Korean Geographical Society, 26(1), 1-29 (in Korean).
  30. Kim, J. Y., 2004, Influence of tectonic uplift on longitudinal profiles of bedrock rivers: Numerical simulations , Journal of the Korean Geographical Society, 39(5), 722-734 (in Korean).
  31. Kim, S. H., 1961, Topographic development of the Central Korea, Seoul University Journal, 10, 111-123 (in Korean).
  32. Kim, S. H., 1973, Geomorphic studies of the erosion surfaces in Central Korea, Seoul University Journal, 23, 85-115 (in Korean).
  33. King, L. C., 1953, Canons of landscape evolution, Geological Society of America Bulletin, 64(7), 721-752. https://doi.org/10.1130/0016-7606(1953)64[721:COLE]2.0.CO;2
  34. Kirchnet, J. W., 1993, Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks, Geology, 21(7), 591-594. https://doi.org/10.1130/0091-7613(1993)021<0591:SIOHSL>2.3.CO;2
  35. Kooi, H. and Beaumont, C., 1994, Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction, Journal of Geophysical Research, 99(B6), 12191-12209. https://doi.org/10.1029/94JB00047
  36. Lee, M. B., 1999, The age dating of slope landform in Korea using diffusion equation model, Journal of the Korean Geographical Society, 34(4), 371-384 (in Korean).
  37. Leopold, L. B., 1968, Hydrology for urban land planning: a guidebook on the hydrologic effects of land use, US Geological Survey Circular, 554.
  38. Lenzi, M. A., Mao, L., and Comiti, F., 2006, Effective discharge for sediment transport in a mountain river: Computational approaches and geomorphic effectiveness, Journal of Hydrology, 326, 257-276. https://doi.org/10.1016/j.jhydrol.2005.10.031
  39. McKean, J. A., Dietrich, W. E., Finkel, R. C., Southon, J. R., and Caffee, M. W., 1993, Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology, 21, 343-346. https://doi.org/10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2
  40. Miller, J. R., Ritter, D. F., and Kochel, R. C., 1990, Morphometric assessment of lithologic controls on drainage basin evolution tin the Crawford Upland, south-centural Indiana, American Journal of Science, 290(5), 569-599. https://doi.org/10.2475/ajs.290.5.569
  41. Montgomery, D. R. and Dietrich, W. E., 1988, Where do channels begin?, Nature, 336(6196), 232-234. https://doi.org/10.1038/336232a0
  42. Montgomery, D. R. and Dietrich, W. E., 1992, Channel initiation and the problem of landscape scale, Science, 255, 826-830. https://doi.org/10.1126/science.255.5046.826
  43. Oh, K. S., 2000, 'Mountain range system' used since the Japanese Ruling era and 'Mountain scenery system' of traditional geography: Characteristics and problems from a geomorphological point of view, Education of Geography, 2, 1-21 (in Korean).
  44. Park, B. K. and Kim, S. W., 1971, Recent tectonism in the Korean Peninsula and sea floor spreading, Journal of Korean Instition of Mining GeoIogy, 4, 39-43.
  45. Penck, W., 1924, Die Morphologische Analyse: Ein Kapital der Physikalischen Geolgie, Von J. Engelhorns Nachf. Verlab, Stuttgart. (Translated by Czech, H. and Boswell, K. C., 1953, Morphological analysis of land forms: A contribution to physical Geology, MacMillan, London.)
  46. Pelletier, J. D. and Rasmussen, C., 2009, Geomorphically based predictive mapping of soil thickness in upland watersheds, Water Resources Research, 45(9).
  47. Roering, J. J., Kirchner, J. W., and Dietrich, W. E., 1999, Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resources Research, 35(3), 853-870. https://doi.org/10.1029/1998WR900090
  48. Smith, T. R. and Bretherton, F. P., 1972, Stability and the conversion of mass in drainage basin evolution, Water Resources Research, 8(6), 1506-1529. https://doi.org/10.1029/WR008i006p01506
  49. Strahler, A. N., 1952, Hypsometric (area-altitude) analysis of erosional topography, Bulletin of the Geological Society of America, 63(11), 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  50. Strahler, A. N., 1957, Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913
  51. Tarboton, D. G., 1997, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33(2), 309-319. https://doi.org/10.1029/96WR03137
  52. Tucker, G. E. and Slingerland, R. L., 1994, Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study, Journal of Geophysical Research, 99(B6), 12229-12243. https://doi.org/10.1029/94JB00320
  53. Tucker, G. E. and Slingerland, R. L., 1997, Drainage basin responses to climate change, Water Resources Research, 33(8), 2031-2047. https://doi.org/10.1029/97WR00409
  54. Tucker, G. E. and Bras, R. L., 1998, Hillslope processes, drainage density, and landscape morphology, Water Resources Research, 34, 2751-2764. https://doi.org/10.1029/98WR01474
  55. van den Berg, J. H., 1995, Prediction of alluvial channel pattern of perennial rivers, Geomorphology, 12(4), 259-279. https://doi.org/10.1016/0169-555X(95)00014-V
  56. van der Beek, P. and Braun, J., 1999, Controls on postmid- Cretaceous landscape evolution in the southeastern highlands of Australia: Insights from numerical surface process models, Journal of Geophysical Research B: Solid Earth, 104(B3), 4945-4966. https://doi.org/10.1029/1998JB900060
  57. Whipple, K. X. and Tucker, G. E., 1999, Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research B: Solid Earth, 104(B8), 17661-17674. https://doi.org/10.1029/1999JB900120
  58. Whipple, K. X., Hancock, G. S., and Anderson, R. S., 2000, River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Bulletin of the Geological Society of America, 112(3), 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2
  59. Wilkinson, M. T., Chappell, J., Humphreys, G. S., Fifield, K., Smith, B., and Hesse, P., 2005, Soil production in heath and forest, Blue Mountains, Australia: Influence of lithology and palaeoclimate, Earth Surface Processes and Landforms, 30(8), 923-934. https://doi.org/10.1002/esp.1254
  60. Wilkinson, M. T. and Humphreys, G. S., 2005, Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates, Australian Journal of Soil Research, 43(6), 767-779. https://doi.org/10.1071/SR04158
  61. Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I., 1991, A coupled channel network growth and hillslope evolution model, 1. Theory, Water Resources Research, 27(7), 1671-1684. https://doi.org/10.1029/91WR00935
  62. Woo, H., 2001, River hydraulics, Cheongmoongak (우효섭, 2001, 하천수리학, 청문각).
  63. Yoon, S. O., Hwang, S. I., and Ban, H. K., 2003, Geomorphic development of marine terraces at Jeongdongjin-Daejin area on the east coast, central part of Korean Peninsula, Journal of the Korean Geographical Society, 38(2), 156-172 (in Korean).