PAPR Reduction Techniques Analysis of Non-Contiguous OFDM in Cognitive Radio Systems

Cognitive Radio 시스템에서 Non-Contiguous OFDM의 PAPR 감소기법 분석

  • Received : 2011.05.03
  • Accepted : 2011.09.16
  • Published : 2011.09.25

Abstract

Cognitive Radio, which is proposed to improve the efficiency of wireless communication systems is the system to share primary user's frequency bands with a secondary user. In this situation, a secondary user uses NC-OFDM (Non-contiguous Orthogonal Frequency Division Multiplexing) to transmit data effectively without interfering with the primary user's spectrum. However, NC-OFDM, in common with contiguous OFDM, degrades the performance of the system by generating high PAPR (Peak-to-Average Power Ratio). In this paper, firstly, we analyse PAPR corresponding to the distribution of subcarriers in NC-OFDM. Then the PAPR reductions that employ the PTS (Partial Transmit Sequence) and SLM (Selective Mapping) are evaluated. Finally, the computational complexities of the PTS and SLM adopting pruned-FFT are compared with conventional PTS and SLM. Further, it is shown that the NC-OFDM with pruned-FFT is more efficient than the contiguous OFDM in terms of computational complexity and PAPR reduction performance.

무선 통신 시스템의 효율을 높이기 위해 제안된 무선인지 (Cognitive Radio) 시스템은 2차 사용자가 주사용자 (primary user)의 스펙트럼을 서로 공유하는 시스템이다. 2차 사용자가 주사용자에게 간섭을 일으키지 않으면서 효율적으로 데이터를 전송하기 위해서 NC-OFDM (Non-contiguous Orthogonal Frequency Division Multiplexing)을 사용한다. 하지만 NC-OFDM은 기존 OFDM과 마찬가지로 높은 PAPR (Peak-to-Average Power Ratio)을 발생시켜 시스템 성능을 저하시킨다. 본 논문에서는 첫 번째로 NC-OFDM에서 부반송파의 분포에 따른 PAPR에 대해 분석하였다. 두 번째로 기존 OFDM의 PAPR 감소기법인 PTS (Partial Transmit Sequence)와 SLM (Selective Mapping)을 NC-OFDM에 적용하여 PAPR 감소성능을 확인하였다. 마지막으로 pruned-FFT가 적용된 PAPR 감소기법을 NC-OFDM에 적용할 경우 계산복잡도를 기존 OFDM과 비교하였다. 시뮬레이션을 통해 pruned-FFT가 적용된 NC-OFDM이 기존 OFDM보다 PAPR 감소성능 및 계산복잡도 측면에서 보다 효율적임을 검증하였다.

Keywords

References

  1. S. Haykin, "Cognitive radio: Brain-empowered wireless communications," IEEE J. Select. Areas Commun., vol. 23, pp. 201-220, Feb. 2005.
  2. R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, "An efficient implementation of NCOFDM transceivers for cognitive radios," in Proc. 1st Int. Conf. on Cogn. Radio Oriented Wireless Networks and Commun., (Mykonos, Greece), Jun. 2006.
  3. J. D. Markel, "FFT Pruning," IEEE Trans. Audio Electroacoust., vol. 19, pp. 305-311, Dec. 1971. https://doi.org/10.1109/TAU.1971.1162205
  4. H. Ochiai and H. Imai, "On the distribution of the peak-to-average power ratio in OFDM signals," IEEE Trans. Commun., vol. 49, pp. 282-289, Feb. 2001. https://doi.org/10.1109/26.905885
  5. R. van Nee and A. de Wild, "Reducing the peak-to-average power ratio of OFDM," in Proc. 48th IEEE Veh. Technol. Conf., (Ottawa, Canada), pp. 2072-2076, May 1998.
  6. R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, "Peak-to-Average Power Ratio Analysis for NC-OFDM Transmissions," in Proc. 66th IEEE Veh. Technol. Conf., (Baltimore, MD, USA), pp. 1351-1355, Sep. 2007.
  7. J. Armstrong, "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering," Electron. Lett., vol. 38, pp. 246-247, Feb. 2002. https://doi.org/10.1049/el:20020175
  8. R .W. Bauml, R. F. H. Fischer, and J. B. Huber, "Reducing the peak to average power ratio of multicarrier modulation by selective mapping," Electron. Lett., vol. 32, pp. 2056-2057, Oct. 1996. https://doi.org/10.1049/el:19961384
  9. S. H. Muller and J. B. Huber, "OFDM with reduced peak to average power ratio by optimum combination of partial transmit sequences," Electron. Lett., vol. 33, pp. 368-369, Feb. 1997. https://doi.org/10.1049/el:19970266
  10. R. J. Baxley and G. T. Zhou, "Computational complexity analysis of FFT pruning--A Markov modeling approach," in Proc. 4th Digital Signal Processing Workshop/12th Signal Processing Education Workshop, pp. 535-539, Sep. 2006.