초록
본 논문은 주파수 영역에서 과거와 현재에 센싱된 결과들의 관계를 이용한 스펙트럼 센싱기법을 제안하였다. 기존에 제안된 대부분의 스펙트럼 센싱기법은 해당 시간에 센싱된 우선사용자의 신호만을 다루고 있다. 해당 시간 이전의 우선사용자의 상태는 조건부확률을 사용하여 검출기의 신뢰성을 증가시킬 수 있다. 따라서, 본 논문은 이전 시간과 해당 시간의 스펙트럼 센싱 결과를 사용하는 cross entropy 기반의 스펙트럼 센싱기법을 제안하며 이를 통해 우선사용자 신호 검출 성능을 향상시키고 잡음에 강인한 성능을 가질 수 있다. 이전 시간에 검출된 신호가 잡음인 경우 cross entropy 기반의 스펙트럼 센싱 성능 감소는 기존의 entropy 기반의 센싱기법과 동일하게 된다. 이러한 문제를 해결하기 위해 본 논문에서는 보다 향상된 cross entropy 센싱기법을 제안하였다. 본 논문은 시뮬레이션을 통해 가장 최근에 제안된 주파수 영역에서의 entropy 기반 스펙트럼 센싱기법 보다 제안된 방법이 더 나은 성능을 보이는 것을 보였다.
In this paper, we present a spectrum sensing method by exploiting the relationship of previous and current detected data sets in frequency domain. Most of the traditional spectrum sensing methods only consider the current detected data sets of Primary User (PU). Previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. By considering the relationship of the previous and current spectrum sensing, cross entropy-based spectrum sensing is proposed to detect PU signal more effectively, which has a strengthened performance and is robust. When previous detected signal is noise, the discriminating ability of cross entropy-based spectrum sensing is no better than conventional entropy-based spectrum sensing. To address this problem, we propose an improved cross entropy-based frequency-domain spectrum sensing. Regarding the spectrum sensing scheme, we have derived that the proposed method is superior to the cross entropy-based spectrum sensing. We proceed a comparison of the proposed method with the up-to-date entropy-based spectrum sensing in frequency-domain. The simulation results demonstrate the performance improvement of the proposed spectrum sensing method.