간단한 신호 부공간 추정을 통한 MUSIC 기반의 효과적인 도래방향 탐지

MUSIC-Based Direction Finding through Simple Signal Subspace Estimation

  • 최양호 (강원대학교 전자통신전공)
  • Choi, Yang-Ho (Dept. of Electronic and Communication Engineering, Kangwon National University)
  • 투고 : 2010.12.06
  • 심사 : 2011.04.04
  • 발행 : 2011.07.25

초록

MUSIC(MUltiple SIgnal Classification)은 신호부공간과 잡음부공간이 서로 직교한다는 사실에 기초하여 센서 어레이에 입사하는 신호의 도래방향을 추정한다. 잡음 부공간에 대한 기저(basis)를 구하기 위해 샘플행렬을 고유분해하며, 이에 따라 많은 계산량을 요구한다. 본 논문에서는 샘플행렬의 열벡터(column vectors)에서 잡음전력을 제거하여 신호 부공간에 대한 기저벡터를 구해 간단히 도래각을 추정하는 방법을 제시한다. 추정된 기저벡터를 이용하여 비용함수를 정의하고, 비용함수의 최소점을 찾아 도래각을 추정한다. 비용함수의 최소점은 격자 간격으로 나누어 계산하는 grid 방법이 아닌, 포물선 보간법(parabolic interpolation)에 기초한 Brent 방법을 적용하여 효과적으로 구해진다. 시뮬레이션 결과에 따르면, 제안방식은 샘플행렬 고유분해에 의존하는 기존방식과 실질적으로 같은 성능을 가짐을 보인다.

The MUSIC (MUltiple SIgnal Classification) method estimates the directions of arrival (DOAs) of the signals impinging on a sensor array based on the fact that the noise subspace is orthogonal to the signal subspace. In the conventional MUSIC, an estimate of the basis for the noise subspace is obtained by eigendecomposing the sample matrix, which is computationally expensive. In this paper, we present a simple DOA estimation method which finds an estimate of the signal subspace basis directly from the columns of the sample matrix from which the noise power components are removed. DOA estimates are obtained by searching for minimum points of a cost function which is defined using the estimated signal subspace basis. The minimum points are efficiently found through the Brent method which employs parabolic interpolation. Simulation shows that the simple estimation method virtually has the same performance as the complex conventional method based on the eigendecomposition.

키워드

참고문헌

  1. H. Krim, and M. Viberg, "Two decades of array signal processing research," IEEE Signal Process. Mag., vol. 13, no. 4, pp. 67-94, July 1996. https://doi.org/10.1109/79.526899
  2. L. C. Godara, "Application of antenna arrays to mobile communications-Part II: Beamforming and DOA considerations," Proceedings of the IEEE, vol. 85, no. 8, pp. 1195-1247, Aug. 1997. https://doi.org/10.1109/5.622504
  3. P. Stoica, and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 5, pp. 720-741, May 1989. https://doi.org/10.1109/29.17564
  4. J. Li, and R. T. Compton, "Maximum likelihood angle estimation for signals with known waveforms," IEEE Trans. Signal Process., vol. 41, pp. 2850 - 2862, Sept. 1993. https://doi.org/10.1109/78.236507
  5. Y.-H. Choi, "Maximum likelihood estimation for angles of arrival of coherent signals using a coherency profile," IEEE Trans. Signal Process., vol. 48, no. 9, pp. 2679-2682, Sept. 2000. https://doi.org/10.1109/78.863079
  6. R. O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276-280, Mar. 1986. https://doi.org/10.1109/TAP.1986.1143830
  7. Y.-H. Choi, "Systematic approach to MUSIC estimation with minimisation of its cost function," Electron. Lett., vol. 35, pp. 620-621, Apr. 1999. https://doi.org/10.1049/el:19990427
  8. A.Ferréol, P. Larzabal, and M. Viberg, "Statistical analysis of the MUSIC algorithm in the presence of modeling errors, Taking Into Account the Resolution Probability," IEEE Signal Process., vol. 58, no. 8, pp. 4156-4166, Aug. 2010. https://doi.org/10.1109/TSP.2010.2049263
  9. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical recipes in fortran. New York: Cambridge University Press, 1992.
  10. B. Noble and J. Daniel, Applied Linear Algebra. New Jersey: Prentice-Hall, 1988.