선택적으로 클럭 신호를 입력하는 저 전력 전류구동 디지털-아날로그 변환기

A Low Power Current-Steering DAC Selecting Clock Enable Signal

  • 양병도 (충북대학교 전자정보대학) ;
  • 민제중 (충북대학교 전자정보대학)
  • Yang, Byung-Do (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Min, Jae-Joong (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2011.06.30
  • 심사 : 2011.10.10
  • 발행 : 2011.10.25

초록

본 논문에서는 선택적으로 클럭 신호를 입력하는 저 전력 전류구동 10비트 D/A 변환기 회로를 제안하였다. 제안된 DAC에서는 데이터가 변하지 않는 전류원 셀에 클럭 신호를 제한하여 클럭 전력 소모를 줄였다. 제안된 DAC는 1.2V 0.13${\mu}m$ CMOS 공정을 사용하여 제작되었으며, DAC 칩 면적은 0.21$mm^2$였다. 200MHz 샘플링 주파수와 1MHz 입력 신호 주파수에서, 제안된 DAC의 전력 소모량은 4.46mW였다. 클럭 신호에서 소모되는 전력은 입력 주파수가 1.25MHz와 10MHz일 때 각각 30.9%와 36.2%로 감소되었다. 측정된 SFDR은 입력주파수가 1MHz와 50MHz일 때 각각 72.8dB와 56.1dB였다.

This paper proposes a low power current-steering 10-bit DAC selecting clock enable signal. The proposed DAC reduces the clock power by cutting the clock signal to the current-source cells in wihich the data will not be changed. The proposed DAC was implemented using a 0.13${\mu}m$ CMOS process with $V_{DD}=1.2V$. Its core area is 0.21$mm^2$. It consumes 4.46mW at 1MHz signal frequency and 200MHz sampling rate. The clock power is reduced to 30.9% and 36.2% of a conventional DAC at 1.25MHz and 10MHz signal frequencies, respectively. The measured SFDRs are 72.8dB and 56.1dB at 1MHz and 50MHz signal frequencies, respectively.

키워드

참고문헌

  1. J.Bastos et al., "A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC," IEEE J.Solid-State Circuits, vol. 33, no.12, pp. 1959-1969, Dec. 1998. https://doi.org/10.1109/4.735536
  2. C-H. Lin and K. Bult, "A 10-b, S-MSample/s CMOS DAC in 0.6 mm2," IEEE J.Solid-state Circuits, vol. 33, no.12, pp. 1948-1958, Dec.1998. https://doi.org/10.1109/4.735535
  3. A. Van den Bosch et al., "A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter," IEEE J.Solid-State Circuits, vol. 36, no.3, pp.315-324, Mar 2001. https://doi.org/10.1109/4.910469
  4. Y. Cong et al., "A 1.5-V 14-Bit 100-MSample/s Self Calibrated DAC," IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2051-2060, Dec. 2003. https://doi.org/10.1109/JSSC.2003.819163
  5. K. O'Sullivan et al., "A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2," IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1064-2060, July 2004. https://doi.org/10.1109/JSSC.2004.829923
  6. J. A. Starzyk et al., "A Cost-Effective Approach to the Design and Layout of a 14-b Current-Steering DAC Macrocell," IEEE Trans. Circuits Sys. I, Reg. Papers, vol. 51, no. 1, pp. 196-300, Jan. 2004. https://doi.org/10.1109/TCSI.2003.821282
  7. J. Deveugele et al., "A 10-bit 250-MS/s Binary-Weighted Current- Steering DAC," IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 320-329, Feb. 2006. https://doi.org/10.1109/JSSC.2005.862342
  8. D. A. Mercer, "Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in $0.18-{\mu}m$ CMOS," IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, Aug. 2007. https://doi.org/10.1109/JSSC.2007.900279
  9. C.-H. Lin et al., "A 12 bit 2.9 GS/s DAC With IM3 < -60 dBc Beyond 1 GHz in 65 nm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285-3293, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2032624
  10. D.-H. Lee et al., "Low-Cost 14-Bit Current-Steering DAC With a Randomized Thermometer-Coding Method," IEEE Trans. Circuits Sys. II, Exp. Brief, vol. 56, no. 2, pp. 137-141, Feb. 2009. https://doi.org/10.1109/TCSII.2008.2011606
  11. M.-H. Shen et al., "Random Swapping Dynamic Element Matching Technique for Glitch Energy Minimization in Current-Steering DAC," IEEE Trans. Circuits Sys. II, Exp. Brief, vol. 57, no. 5, pp. 369-373, May 2010. https://doi.org/10.1109/TCSII.2010.2043400