A Low Power Current-Steering DAC Selecting Clock Enable Signal

선택적으로 클럭 신호를 입력하는 저 전력 전류구동 디지털-아날로그 변환기

  • Yang, Byung-Do (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Min, Jae-Joong (College of Electrical and Computer Engineering, Chungbuk National University)
  • 양병도 (충북대학교 전자정보대학) ;
  • 민제중 (충북대학교 전자정보대학)
  • Received : 2011.06.30
  • Accepted : 2011.10.10
  • Published : 2011.10.25

Abstract

This paper proposes a low power current-steering 10-bit DAC selecting clock enable signal. The proposed DAC reduces the clock power by cutting the clock signal to the current-source cells in wihich the data will not be changed. The proposed DAC was implemented using a 0.13${\mu}m$ CMOS process with $V_{DD}=1.2V$. Its core area is 0.21$mm^2$. It consumes 4.46mW at 1MHz signal frequency and 200MHz sampling rate. The clock power is reduced to 30.9% and 36.2% of a conventional DAC at 1.25MHz and 10MHz signal frequencies, respectively. The measured SFDRs are 72.8dB and 56.1dB at 1MHz and 50MHz signal frequencies, respectively.

본 논문에서는 선택적으로 클럭 신호를 입력하는 저 전력 전류구동 10비트 D/A 변환기 회로를 제안하였다. 제안된 DAC에서는 데이터가 변하지 않는 전류원 셀에 클럭 신호를 제한하여 클럭 전력 소모를 줄였다. 제안된 DAC는 1.2V 0.13${\mu}m$ CMOS 공정을 사용하여 제작되었으며, DAC 칩 면적은 0.21$mm^2$였다. 200MHz 샘플링 주파수와 1MHz 입력 신호 주파수에서, 제안된 DAC의 전력 소모량은 4.46mW였다. 클럭 신호에서 소모되는 전력은 입력 주파수가 1.25MHz와 10MHz일 때 각각 30.9%와 36.2%로 감소되었다. 측정된 SFDR은 입력주파수가 1MHz와 50MHz일 때 각각 72.8dB와 56.1dB였다.

Keywords

References

  1. J.Bastos et al., "A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC," IEEE J.Solid-State Circuits, vol. 33, no.12, pp. 1959-1969, Dec. 1998. https://doi.org/10.1109/4.735536
  2. C-H. Lin and K. Bult, "A 10-b, S-MSample/s CMOS DAC in 0.6 mm2," IEEE J.Solid-state Circuits, vol. 33, no.12, pp. 1948-1958, Dec.1998. https://doi.org/10.1109/4.735535
  3. A. Van den Bosch et al., "A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter," IEEE J.Solid-State Circuits, vol. 36, no.3, pp.315-324, Mar 2001. https://doi.org/10.1109/4.910469
  4. Y. Cong et al., "A 1.5-V 14-Bit 100-MSample/s Self Calibrated DAC," IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2051-2060, Dec. 2003. https://doi.org/10.1109/JSSC.2003.819163
  5. K. O'Sullivan et al., "A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2," IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1064-2060, July 2004. https://doi.org/10.1109/JSSC.2004.829923
  6. J. A. Starzyk et al., "A Cost-Effective Approach to the Design and Layout of a 14-b Current-Steering DAC Macrocell," IEEE Trans. Circuits Sys. I, Reg. Papers, vol. 51, no. 1, pp. 196-300, Jan. 2004. https://doi.org/10.1109/TCSI.2003.821282
  7. J. Deveugele et al., "A 10-bit 250-MS/s Binary-Weighted Current- Steering DAC," IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 320-329, Feb. 2006. https://doi.org/10.1109/JSSC.2005.862342
  8. D. A. Mercer, "Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in $0.18-{\mu}m$ CMOS," IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, Aug. 2007. https://doi.org/10.1109/JSSC.2007.900279
  9. C.-H. Lin et al., "A 12 bit 2.9 GS/s DAC With IM3 < -60 dBc Beyond 1 GHz in 65 nm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285-3293, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2032624
  10. D.-H. Lee et al., "Low-Cost 14-Bit Current-Steering DAC With a Randomized Thermometer-Coding Method," IEEE Trans. Circuits Sys. II, Exp. Brief, vol. 56, no. 2, pp. 137-141, Feb. 2009. https://doi.org/10.1109/TCSII.2008.2011606
  11. M.-H. Shen et al., "Random Swapping Dynamic Element Matching Technique for Glitch Energy Minimization in Current-Steering DAC," IEEE Trans. Circuits Sys. II, Exp. Brief, vol. 57, no. 5, pp. 369-373, May 2010. https://doi.org/10.1109/TCSII.2010.2043400