Design and Piezoelectric properties of 2-2 piezocomposite Ultrasonic Transducers by means of the Finite Element Methode

유한요소해석법을 이용한 2-2형 압전복합재료 초음파 트랜스듀서의 설계 및 압전특성

  • Received : 2011.05.03
  • Accepted : 2011.06.15
  • Published : 2011.06.25

Abstract

In this study, PZT-5A green sheet were prepared by using tape casting technique, and the piezoelectric properties of PZT-5A by variation of sintering temperature was investigated. After, design and piezoelectric properties of 2-2 piezocomposite ultrasonic transducers by menas of the FEA. The acoustic impedance and piezoelectric charge constant of the 2-2 type piezocomposite transducer decreased proportionally due to the density decrease caused by the PZT volume fraction decrease. The piezocomposite acoustic impedance were 7~3 MRayl between 0.6 and 0.2 allowing it to be used for a ultrasonic transducer. The resonance characteristics and the electro-mechanical coupling factor were the best when the volume fraction PZT was 0.6. The PZT volume fraction shows the fixed value, 0.6~0.65, approximately within the range between 0.2 and 0.6 while it is increased to decreased over the range. The result of the experiment above confirmed that the 2-2 piezoelectric composites could be used as the ultrasonic transducers.

본 연구에서는 테입-케스팅 방법을 이용하여 제작한 PZT-5A의 소결온도 변화에 따른 압전특성을 조사한 후 유한요소 해석법을 이용하여 2-2형 압전복합재료를 초음파 트랜스듀서를 설계하고 압전특성을 해석하였다. 2-2형 압전복합재료의 음향임피던스와 압전전하상수($d_{33}$)는 PZT 부피분율이 감소함에 따라 밀도의 감소로 감소하여 0.6~0.2의 범위에서 14~3 MRayl로 초음파 트랜스듀서로 사용가능한 특성을 나타내었다. 공진특성과 전기기계결합계수는 PZT부피분율이 0.6일 때 가장 우수한 특성을 나타내었으며, PZT의 부피분율이 0.2~0.6에서는 $k_t$ 값이 0.64~0.68로 거의 일정한 값을 유지하였지만 그 이상에서는 급격하게 감소하는 것을 확인할 수 있었다. 이상의 실험결과로부터 2-2형 압전복합재료는 초음파 트랜스듀서 재료로 응용 가능성을 확인 할 수 있었다.

Keywords

References

  1. 노용래, "초음파센서용 압전 재료", 전기전자재료학회지, 14권, 4호, pp. 16-22, 2001.
  2. R. E. Newnham, D. P. Skiner & R. E. Cross, "Connectivity and Piezoelectric -Pyroelectric Composites", Mat. Res. Bull., 13, pp.525-536, 1978. https://doi.org/10.1016/0025-5408(78)90161-7
  3. Y. R. Roh and B. T. Khuri-Yakub, "Finite element analysis of underwater capacitor micromachined ultrasonic transducers", IEEE Trans. Ultrason, Ferroelectr. Freq. Contr., Vol. 49, pp. 293-298, 2002. https://doi.org/10.1109/58.990939
  4. S. Takahashi, S. Hirose, K. Uchino and K. Y. Oh, "Electro-mechanical characteristics of lead-zirconate-titanate ceramics under vibration-level change", Proc. of IEEE, pp. 377-382, 1995.
  5. R. Lerch, "Simulation of piezoelectric devices by two and three dimensional finite elements", IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., Vol. 37, No. 2, p. 233, 1990. https://doi.org/10.1109/58.55314
  6. M. J. Haun and R. E. Newnham, "Experimental and theoretical study of 1-3 and 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications", Ferroelectrics, Vol. 68, pp. 123-139. 1986. https://doi.org/10.1080/00150198608238743
  7. A. Fufumoto, "The application of piezoelectric ceramics in diagnostic ultrasound transducers", Ferroelectrics, Vol. 40, pp. 212-230, 1982.
  8. H. Takeuchi and C. Nakaya, "PZT/Polymer composites for medical ultrasonic probe", Ferroelectrics, Vol. 68, No. 1, p. 53-61, 1986. https://doi.org/10.1080/00150198608238737
  9. D. Robertson, G. Hayward and A. Gachagan, "Comparison of the frequency and pyhsical nature of the lowest order parasitic mode in single crystal and ceramic 2-2 and 1-3 piezoelectric composite transducers", IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., Vol. 53, No. 8, pp. 1503-1512, 2006. https://doi.org/10.1109/TUFFC.2006.1665108