Face Recognition based on SURF Interest Point Extraction Algorithm

SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구

  • 강민구 (세종대학교 컴퓨터공학과) ;
  • 추원국 (세종대학교 컴퓨터공학과) ;
  • 문승빈 (세종대학교 컴퓨터공학과)
  • Received : 2010.12.13
  • Accepted : 2011.05.12
  • Published : 2011.05.25

Abstract

This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.

본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 소개한 다. 일반적으로, SURF를 이용한 물체 인식은 특징점 추출 및 정합만을 수행하지만, 본 논문에서 제안하는 SURF를 이용한 얼굴 인식 방법은 특징점 추출 및 정합뿐만 아니라 얼굴 영상 회전 및 특징점 검증을 추가로 수행한다. 얼굴 영상 회전은 특징점의 수를 증가시키기 위해 수행되며, 특징점 검증은 정확하게 정합된 특징점들을 찾기 위해 수행된다. 비록 본 논문에서 제안한 SURF를 이용한 얼굴 인식 방법은 PCA를 이용한 방법보다 연산 시간이 더 요구되었지만, 인식률은 보다 더 높았다. 이러한 실험 결과를 통해, 특징점 추출 알고리즘도 얼굴 인식에 적용할 수 있음을 확인할 수 있었다.

Keywords

References

  1. Tan, X., Chen, S., Zhou, Z., and Zhang, F., "Face recognition from a single image per person: A survey," Pattern Recognition, Vol. 39, No. 9, pp. 1725-1745, Sep. 2006. https://doi.org/10.1016/j.patcog.2006.03.013
  2. M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neurosicence, Vol. 3, No. 1, pp. 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  3. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul.1997. https://doi.org/10.1109/34.598228
  4. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, "Face recognition by independent component analysis," IEEE Trans. Neural Netw., vol.13, no. 6, pp. 1450-1464, Jun. 2002. https://doi.org/10.1109/TNN.2002.804287
  5. D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60, 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  6. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features", Computer Vision and Image Understanding (CVIU), vol. 110 no. 3, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  7. D. Lowe, "Object recognition from local scale-invariant features", In ICCV, 1999.
  8. H. Bay, Beat Fasel, and Luc Van Gool, "Interactive museum guide: Fast and robust recognition of museum objects", In First international workshop on mobile vision, 2006.
  9. H. Tamimi, H. Andreasson, A. Treptow, T. Duckett, and A. Zell, "Localization of mobile robots with omnidirectional vision using particle filter and iterative SIFT, in Proc. 2nd European Conf. on Mobile Robots - ECMR'05, Ancona, Italy, September 2005.
  10. A.C. Murillo, J.J. Guerrero, and C. Sagüés, "SURF Features for Efficient Robot Localization with Omnidirectional Images", Proc. 2007 IEEE Int'l Conf. Robotics and Automation, IEEE Press, pp. 3901-3907, 2007.
  11. S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization and mapping using scale-invariant features. In Proc. of the International Conference on Robotics & Automation (ICRA), 2001.
  12. M. Cummins, P. Newman, "FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance", International Journal of Robotics Research, Vol. 27, No. 6, pp. 647-665, 2008. https://doi.org/10.1177/0278364908090961
  13. M. Bicego, A. Lagorio, E. Grosso, M. Tistarelli, "On the Use of SIFT Features for Face Authentication", CVPR Workshop, pp. 35-35, 2006.
  14. Shan An, Xin Ma, Rui Song and Yibin Li, "Face detection and recognition with SURF for human-robot interaction", ICAL, pp. 1946-1951, 2009.
  15. M. Kang, W. Choo and S. Moon, "Improved face recognition algorithm employing SURF descriptors," in Proc. SICE Annual Conf., pp. 2511-2513, Aug. 2010.
  16. P.A. Viola and M.J. Jones. "Rapid object detection using a boosted cascade of simple features", In CVPR (1), pages 511 - 518, 2001.
  17. Extended Yale Face Database B, http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
  18. M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neurosicence, Vol. 3, No. 1, pp. 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  19. Hyeonjoon Moon, P Jonathon Phillips, "Computational and performance aspects of PCA-based face-recognition algorithms", Perception, vol. 30, pp. 303-321, 2001. https://doi.org/10.1068/p2896
  20. 조현종, 강민구, 문승빈, "조명 변화 환경에서 PCA 기반 얼굴인식 알고리즘의 신뢰도에 대한 연구", 전자공학회논문지, 162-169쪽, 2009년 3월
  21. 조현종, "PCA와 Gabor Wavelet을 이용한 조명변화에 강인한 혼합형 얼굴인식 시스템", 세종대학교 석사 학위논문, 2010.02.