히스톤 메틸화 변형을 통한 배아줄기세포의 후성 유전학적 조절

Epigenetic Regulation by Modification of Histone Methylation in Embryonic Stem Cells

  • 하양화 (충북대학교 자연과학대학 생화학과) ;
  • 김영은 (충북대학교 자연과학대학 생화학과) ;
  • 박정아 (충북대학교 자연과학대학 생화학과) ;
  • 박상규 (충북대학교 자연과학대학 생화학과) ;
  • 이영희 (충북대학교 자연과학대학 생화학과)
  • Ha, Yang-Hwa (Dept. of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kim, Young-Eun (Dept. of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Park, Jeong-A (Dept. of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Park, Sang-Kyu (Dept. of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Young-Hee (Dept. of Biochemistry, College of Natural Sciences, Chungbuk National University)
  • 투고 : 2011.11.17
  • 심사 : 2011.12.14
  • 발행 : 2011.12.31

초록

후성유전학적 조절은 DNA 서열상의 변화 없이도 유전자의 기능을 변화시킬 수 있는 현상을 뜻한다. 염색체의 후성유전학적 상태는 히스톤 변형, DNA 변형 그리고 RNAi에 의한 유전자 침묵 등에 의해 조절된다. 본 총설에서는 배아줄기세포에서의 후성 유전학적 조절에 영향을 주는 요인으로서 히스톤(histone)의 메틸화에 초점을 맞추었다. 배아줄기세포에서 발현되는 유전자의 조절에는 두 가지 단백질 복합체가 관여한다. Polycomb repressive complex 2(PRC2)는 EED, EZH2, SUZ1를 주요인자로 포함하며, H3K27의 trimethylation(H3K27me3)을 증가시킴으로써 유전자의 발현을 억제한다. 이와는 대조적으로 Trithorax group(TrxG) 복합체는 주요인자로 MLL family를 포함하며, H3K4의 trimethylation(H3K4me3) 시킴으로써 유전자의 발현을 활성화한다. PRC2 및 TrxG는 다양한 보조 단백질을 포함한다. 배아줄기세포에서 후성유전학적 조절의 두드러진 특징은 H3K27me3과 H3K4me3이 동시에 나타나는 이가 상태(bivalent state)이다. PRC2와 TrxG 복합체 그리고 H3K4나 K3K27의 메틸화에 특이적으로 작용하는 탈메틸효소(demethylase)가 한데 어우러져 배아줄기세포에서 만능성 관련 유전자와 발달 관련 유전자의 발현을 조절함으로써 줄기세포의 유지 및 분화에 기여한다. 따라서 후성유전학적 조절인자들에 대한 보다 자세한 연구는 배아줄기세포를 보다 잘 이해하고 활용하는데 도움을 줄 것이다.

Epigenetic regulation is a phenomenon that changes the gene function without changing the underlying DNA sequences. Epigenetic status of chromosome is regulated by mechanisms such as histone modification, DNA modification, and RNAi silencing. In this review, we focused on histone methylation for epigenetic regulation in ES cells. Two antagonizing multiprotein complexes regulate methylation of histones to guide expression of genes in ES cells. The Polycomb repressive complex 2 (PRC2), including EED, EZH2, and SUZ12 as core factors, contributes to gene repression by increasing trimethylation of H3K27 (H3K27me3). In contrast, the Trithorax group (TrxG) complex including MLL is related to gene activation by making H3K4me3. PRC2 and TrxG accompany a variety of accessory proteins. Most prominent feature of epigenetic regulation in ES cells is a bivalent state in which H3K27me3 and H3K4me3 appear simultaneously. Concerted regulation of PRC2, TrxG complex, and H3K4- or H3K27-specific demethylases activate expression of pluripotency-related genes and suppress development-related genes in ES cells. Modified balance of the regulators also enables ES cells to efficiently differentiate to a variety of cells upon differentiating signals. More detailed insights on the epigenetic regulators and their action will lead us to better understanding and use of ES cells for future application.

키워드

참고문헌

  1. Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka IR (2011) WDR5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183-197. https://doi.org/10.1016/j.cell.2011.03.003
  2. Boulay G, Rosnoblet C, Guerardel C, Angrand PO, Leprince D (2011) Functional characterization of hPCL3 (human Polycomb-like 3) soforms identifies them as components of distinct EZH2 protein complexes. Biochem J 434:333-342. https://doi.org/10.1042/BJ20100944
  3. Chamberlain SJ, Yee D, Magnuson T (2008) Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26:1496-1505. https://doi.org/10.1634/stemcells.2008-0102
  4. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106-1117. https://doi.org/10.1016/j.cell.2008.04.043
  5. Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128:1063-1076. https://doi.org/10.1016/j.cell.2007.02.003
  6. Christophersen NS, Helin K (2007) Epigenetic control of embryonic stem cell fate. J Exp Med 207:2287-2295.
  7. Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2:160-169. https://doi.org/10.1016/j.stem.2007.12.011
  8. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: A landscape takes shape. Cell 128:635-638. https://doi.org/10.1016/j.cell.2007.02.006
  9. Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798-802. https://doi.org/10.1126/science.1086887
  10. Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG (2011) Role for DPY-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144:513-525. https://doi.org/10.1016/j.cell.2011.01.020
  11. Jung YW, Park IH (2011) Change of X chromosome status during development and reprogramming. Dev Reprod 15:187-195.
  12. Kim D, Patel SR, Xiao H, Dressler GR (2009) The role of PTIP in maintaining embryonic stem cell pluripotency. Stem Cells 27:1516-1523. https://doi.org/10.1002/stem.79
  13. Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A (2009) Chromatin remodelling factor MLL1 is essential for neurogenesis from postnatal neural stem cells. Nature 458:529-533. https://doi.org/10.1038/nature07726
  14. Lubitz S, Glaser S, Schaft J, Stewart AF, Anastassiadis K (2007) Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase MLL2. Mol Biol Cell 18:2356-2366. https://doi.org/10.1091/mbc.E06-11-1060
  15. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299-312. https://doi.org/10.1016/j.stem.2007.08.003
  16. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27:3769-3779. https://doi.org/10.1128/MCB.01432-06
  17. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J, Helin K (2010) JARID2 regulates binding of the polycomb repressive complex 2 to target genes in ES cells. Nature 464:306-310. https://doi.org/10.1038/nature08788
  18. Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycombrepressive complex 2. Genes Dev 22:1345-1355. https://doi.org/10.1101/gad.470008
  19. Ringrose1 L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223-232. https://doi.org/10.1242/dev.02723
  20. Schuettengruber B, Cavalli G (2009) Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531-3542. https://doi.org/10.1242/dev.033902
  21. Seo Y-M, Lee K-A (2010) Current progress and prospects of reprogramming factors - stem cells vs germ cells. Dev Reprod 14:43-50.
  22. Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH (2009) Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139:1303-1314. https://doi.org/10.1016/j.cell.2009.12.003
  23. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, Yuan GC, Orkin SH (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32:491-502. https://doi.org/10.1016/j.molcel.2008.10.016
  24. Stoller JZ, Huang L, Tan CC, Huang F, Zhou DD, Yang J, Gelb BD, Epstein JA (2010) Ash2l interacts with Tbx1 and is required during early embryogenesis. Exp Biol Med 235:569-576. https://doi.org/10.1258/ebm.2010.009318
  25. Tate CM, Lee JH, Skalnik DG (2009) Cxxc finger protein 1 contains redundant functional domains that support embryonic stem cell cytosine methylation, histone methylation, and differentiation. Mol Cell Biol 29:3817-3831. https://doi.org/10.1128/MCB.00243-09
  26. Walker E, Manias JL, Chang1 WY, Stanford WL (2011) PCL2 modulates gene regulatory networks controlling self-renewal and commitment in embryonic stem cells. Cell Cycle 10:45-51. https://doi.org/10.4161/cc.10.1.14389
  27. Zhang Z, Jones A, Sun CW, Li C, Chang CW, Joo HY, Dai Q, Mysliwiec MR, Wu LC, Guo Y, Yang W, Liu K, Pawlik KM, Erdjument-Bromage H, Tempst P, Lee Y, Min J, Townes TM, Wang H (2011) PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprograming. Stem Cells 29:229-240. https://doi.org/10.1002/stem.578