
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2052 

Copyright ⓒ 2011 KSII 

 

The work was supported by the National High Technology Research and Development Program of China (863 

Program), under Grants 2007AA041201-4 and 2009AA04Z144 and the Shanghai Leading Academic Discipline 

Project under Grant B504. 

 

DOI: 10.3837/tiis.2011.11.010 

Low-delay Node-disjoint Multi-path 
Routing using Complementary Trees for 

Industrial Wireless Sensor Networks 
 

Luming Liu
1,2

, Zhihao Ling
1,2

 and Yun Zuo
1,2

 
1 School of Information Science and Engineering, East China University of Science and Technology 

Shanghai, 200237 - China 
2 Key Laboratory of Advanced Control and Optimization for Chemical Process, Ministry of Education 

Shanghai, 200237 - China 

[e-mail: llm361163@sohu.com, zhhling@ecust.edu.cn, happyxiaoyunzi@126.com] 

*Corresponding author: Luming Liu 

 

Received May 13, 2011; revised August 26, 2011; accepted September 21, 2011;  

published November 29, 2011 

 

 

Abstract 
 

Complementary trees are two spanning trees rooted at the sink node satisfying that any source 

node’s two paths to the sink node on the two trees are node-disjoint. Complementary trees 

routing strategy is a special node-disjoint multi-path routing approach. Several 

complementary trees routing algorithms have been proposed, in which path discovery 

methods based on depth first search (DFS) or Dijkstra’s algorithm are used to find a path for 

augmentation in each round of path augmentation step. In this paper, a novel path discovery 

method based on multi-tree-growing (MTG) is presented for the first time to our knowledge. 

Based on this path discovery method, a complementary trees routing algorithm is developed 

with objectives of low average path length on both spanning trees and low complexity. 

Measures are employed in our complementary trees routing algorithm to add a path with nodes 

near to the sink node in each round of path augmentation step. The simulation results 

demonstrate that our complementary trees routing algorithm can achieve low average path 

length on both spanning trees with low running time, suitable for wireless sensor networks in 

industrial scenarios. 
 

 

Keywords: Node-disjoint multi-path routing, complementary trees, path discovery method, 

average path length, time complexity 

mailto:zhhling@ecust.edu.cn
mailto:happyxiaoyunzi@126.com


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2053 

1. Introduction 

A reliable, low-delay and low-complexity routing algorithm is necessary to wireless sensor 

networks in process automation industry. Firstly, the nodes in harsh industrial environment 

may fail for some reasons such as electromagnetic interference, so there should be at least two 

node-disjoint paths from a source node to the sink node. Secondly, the sensory data should be 

transmitted to the sink node in low delay for some time-critical tasks, so the path length (hops) 

from a source node to the sink node should be as low as possible. Thirdly, the complexity of a 

practical routing algorithm should not be large. In industrial wireless sensor networks (IWSN), 

centralized multipath routing and TDMA scheduling should be used together to provide 

reliable and deterministic end-to-end delivery of sensory data, as required by WirelessHART 

which is a well-known wireless communication standard specifically designed for process 

measurement and control applications, ratified by the HART Communication Foundation in 

September 2007 [1].  

Multipath routing (MPR) is an effective strategy to achieve reliability in which data can be 

transmitted over multiple paths [2][3][4]. To improve the transmission reliability and avoid 

shared-node failures, the multiple paths from a source node to a destination node in MPR can 

be selected to be node-disjoint [5][6][7][8][9]. 

In conventional multipath routing algorithms, the complete path information is embedded in 

every packet, or every intermediate node must maintain a routing table of considerable scale. 

To reduce the packet overhead and node routing-table overhead (hence reduce lookup time), 

complementary trees routing can be employed. The complementary trees denote two spanning 

trees (called blue tree and red tree respectively) rooted at the sink node satisfying that any 

source node’s two paths to the sink node on the two trees are node-disjoint. The routing table 

at any node has only two entries. A packet transmitted from a source node is marked with one 

of the two colors. An intermediate node that receives the packet forwards it based on the color 

field in the packet. Fig. 1 illustrates two complementary trees rooted at the sink node, where 

the tree with blue edges (red edges, respectively) is the blue tree (red tree, respectively).  

: blue parent

: red parent 

F

C

E

B

D

A
Sink node

 
Fig. 1. An example of two complementary trees 

1.1 Related Works  

1.1.1 Path Augmentation Technique 

Path augmentation technique [11] is a basic principle to construct two complementary trees for 

a two-node-connected network G, and the technique is used in all complementary trees routing 

algorithms. The path augmentation technique starts by choosing an arbitrary directed cycle in 

G with at least three nodes. If this cycle does not include all the nodes of G, then a path that 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%b7%a5%e4%b8%9a%e7%8e%b0%e5%9c%ba%e7%8e%af%e5%a2%83&tjType=sentence&style=&t=industrial+environment
http://dict.cnki.net/dict_result.aspx?searchword=%e7%94%b5%e7%a3%81%e6%b3%a2%e5%b9%b2%e6%89%b0&tjType=sentence&style=&t=electromagnetic+interference


2054           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

starts and ends on distinct nodes on the blue tree and that passes through k (k 1) nodes not on 

the tree is chosen for augmentation. The path augmentation continues until all the nodes in the 

network are on the blue tree. 

1.1.2 Path discovery method 

As the key step of the path augmentation technique, the path discovery method determines the 

average path length performance and the complexity of the complementary trees algorithm. 

The existing complementary trees algorithms differ mainly in path discovery methods. 

Medard et al. [11] presented the basic path augmentation technique, but they didn’t 

explicitly discuss the path discovery method. And their algorithm selects a cycle and 

successive paths at random without considering the path length performance.  

The linear time algorithms in [12][13][14] find paths successively using a DFS tree. In [15], 

depth first search from a node already on the blue tree is performed to find a path in each round 

of path augmentation step. The centralized version of the algorithm in [15] referred to as the 

RKK algorithm with time complexity (| | (| | | |))O N N L  is used for comparison purpose in 

this paper. The algorithms in [12][13][14][15] can not find a path with nodes near to the sink 

node in each round of path augmentation step, so the average path length of node on the 

resulted complementary trees can be further reduced significantly.  

Algorithm 5 in [16] is referred to as the XCT algorithm with time complexity 
2(| | (| | log | | | |))O N N N L . In the XCT algorithm, a path with minimum total path length 

increase on blue tree is found for augmentation using Dijkstra’s algorithm in each round of 

path augmentation step. The XCT algorithm only considers the path length minimization on 

the blue tree. 

The BR algorithm in [17] improves the XCT algorithm in that it tries to minimize the path 

length on both blue tree and red tree. Dijkstra’s algorithm is performed multiple times in each 

round of path augmentation step to find a path with minimum total path length increase on 

both trees. The BR algorithm is known to perform well in terms of average path length on both 

trees in existing complementary trees algorithms, but it has a high time complexity 
2(| | (| | log | | | |))O N N N L , therefore the algorithm will cost large running time, especially 

when the network size is large. If breadth first search (BFS) is used as the path discovery 

method in the BR algorithm, its time complexity is still 2(| | (| | | |))O N N L . 

1.2 Features of our work 

In this paper, we propose a complementary trees algorithm with objectives of low average path 

length on both trees and low time complexity. A novel path discovery method called 

multi-tree-growing (MTG) is designed, which finds a path in a different way from existing 

path discovery methods. The algorithms in [16][17] are greedy methods in that they find a path 

with minimum total path length increase in each round of path augmentation step, while our 

algorithm attempts to add the path with nodes near to the sink node.  

The contributions of this paper are summarized as follows: 

1) A novel path discovery method is developed and used in our complementary trees 

algorithm, making the latter perform well in both average path length and time complexity. 

2) To augment a path with nodes near to the sink node, the traditional path augmentation 

technique is improved in that a cycle containing the sink node can be added in any round of 

path augmentation step, and multiple trees grow in level order to find a path for augmentation 

in each round of path augmentation step. 

3) The work in [11] stated that a network must be two-node-connected to obtain two 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2055 

complementary trees, while we make the supplement in this paper that our complementary 

trees algorithm also works for a special kind of one-node-connected network.  

The rest of the paper is organized as follows. Section 2 gives the network model and 

problem definition. Section 3 presents our complementary trees routing algorithm. Section 4 

gives the theoretical analysis of our algorithm. Section 5 presents the simulation results and 

describes the performance comparison of our algorithm with existing complementary trees 

algorithms. The conclusions are presented in Section 6. 

2. Problem Formulation 

Consider a two-node-connected network ( , , )G N L s composed of a set of nodes N and a set of 

links L, where sN is the sink node. A link exists between two nodes if they are in the 

receiving range of each other. 

Problem definition. For the network ( , , )G N L s , the goal is to construct two complementary 

trees B and R (called blue tree and red tree, respectively) rooted at s with minimum average 

path length from a source node to s on both trees such that the node-disjoint path constraint is 

satisfied. 

Let 
B

uP  (
R

uP , respectively) denote the directed path from a source node u to s on B (R, 

respectively). 

Node-disjoint path constraint: if the path from u to s on the blue tree traverses node v, then 

the path from u to s on the red tree does not traverse node v, i.e., 
 

\{ }u N s  and \{ , }v N s u    
R B

u uv P v P                                    (1) 

 

For a source node u, u’s path to the sink node on B (R, respectively) is called u’s blue path 

(red path, respectively), and u’s next hop node in its blue path (red path, respectively) is called 

its blue parent (red parent, respectively). Dual path of a source node denotes its blue path and 

red path together.   

Integer linear program (ILP) can be used to obtain an optimal solution to the above question 

only for small-scale networks, its application to large-scale networks is impractical due to its 

prohibitive computational time [15]. Therefore, we designed a heuristic approach to solve the 

above question in this paper.  

3. Low-delay and Low-complexity Complementary Trees Algorithm 

Our complementary trees algorithm is called MTG algorithm for short. We first give some 

definitions used in the algorithm. We called the path or cycle discovered in a path 

augmentation step an ear, in other words, an ear is a path whose end nodes lie on the blue tree 

(or red tree) but whose internal nodes do not. If an ear has two different end nodes, the ear is 

called a normal ear. If both of an ear’s two end nodes are the sink node s, the ear is called a sink 

ear.  

Table 1 presents some notations used in the algorithm. The information of all nodes is 

maintained in a one-dimensional array D and the array index for each node is used as the 

node’s identification number (ID). C2 denotes the IDs of nodes on the blue tree (or red tree) 

and Cx denotes the complement of C2 with respect to the universal set of N. In the following 

paragraphs, “a node in C2 (Cx, respectively)” means that the node’s ID is in C2 (Cx, 

respectively).  



2056           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

 
Table 1. Notations used in the MTG algorithm 

Notation Type Comment 

D node array stores information for all nodes of N 

C2 node ID list stores the IDs of nodes on the blue tree 

Cx node ID list complement of C2 with respect to the universal set of N 

s, u, v, w node ID s is the sink node’s ID 

D[u].con integer state of node u 

D[u].root node ID root node of the 1-connected tree containing node u 

D[u].parent node ID temporary parent node of node u 

D[u].nbrlist node ID list u’s neighbor list 

3.1 Working of the Algorithm 

The MTG algorithm is presented in Fig. 2, it works as follows: 

1) In the initial stage (line 1 - line 7), the blue tree and red tree only contain the sink node s. 

2) Perform a round of multi-tree-growing procedure (line 9 - line 25) to find an ear (sink ear 

or normal ear) and then add the ear to the blue tree and red tree.  

3) If the blue tree includes all nodes in G, the algorithm stops, else goes to step 2. 

In the initial stage, all nodes excluding s are stored in Cx list in level order so that the nodes 

with low levels (near to the sink node) can be processed first in each round of 

multi-tree-growing procedure, and each node’s neighbor nodes are recorded in its neighbor list 

in level order too. Breadth first search (BFS) is used to determine all nodes’ levels where the 

level of the sink node s is 0.  

The multi-tree-growing procedure is performed repeatedly in the MTG algorithm. During 

each round of multi-tree-growing procedure, nodes in Cx connect with the blue tree in level 

order and therefore multiple trees grow level by level, when two different trees meet at a node 

u for the first time, u’s upstream paths in the two trees form an ear. Either a sink ear or a normal 

ear can be found in each round of multi-tree-growing procedure if the blue tree does not 

include all nodes of the network, and a sink ear can be found in the first round of 

multi-tree-growing procedure, to be proved in section 4. After an ear is found, it is augmented 

to the blue tree and red tree in the way specified in the following ear augmentation rule, and the 

voltage values will be assigned to the nodes of the ear according to the following node voltage 

rule.  

The ear discovery and augmentation procedure above will be performed repeatedly until all 

nodes of the network are on the blue tree. The flowchart of the algorithm is shown in Fig. 3. 

Some algorithmic details are specified as follow. 

3.1.1 Node State Rule 

Every node can be in one of the following three states: 0-connected, 1-connected and 

2-connected. At the beginning of the algorithm, the sink node s is set 2-connected and stored in 

C2, while all other nodes are set 0-connected and stored in Cx. During a multi-tree-growing 

procedure, the 0-connected nodes in Cx are processed and become 1-connected (configured 

with a temporary parent) with the blue tree in level order, and the other nodes unprocessed in 

Cx are still 0-connected. We define a 1-connected tree as a tree satisfying the following two 

constraints: 1) the root of the tree is either a 2-connected node (excluding s) in C2 or a 

1-connected node in Cx which is a neighbor of s, 2) the other nodes of the tree are 1-connected 

nodes in Cx. As the above process continues, multiple 1-connected trees grow level by level. 

When two different 1-connected trees meet at a node u for the first time, u’s upstream paths in 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2057 

the two 1-connected trees form an ear. Then the 1-connected nodes of the ear (called ear nodes 

for short) will be configured with blue parent and red parent and set 2-connected, and these ear 

nodes will be deleted from Cx and added into C2. At the end of the multi-tree-growing 

procedure, all 1-connected nodes left in Cx will be set 0-connected (line 25) ready for the next 

round of multi-tree-growing procedure. 

 

 

Fig. 2. The MTG algorithm to construct two complementary trees 

 

Note that the two end nodes of an ear are 2-connected nodes while the internal nodes of an 

ear are 1-connected nodes. The nodes in C2 are 2-connected, and we use C0, C1 to denote the 

0-connected and 1-connected nodes, then they satisfy the following constraint: 
 

0 2

i

i

C N
 

 , i jC C   and  Cx= 0 1C C     i j and 0 , 2i j                  (2) 

3.1.2 Ear Augmentation Rule 

When a sink ear (s,v1,…,vk,s) is found in a multi-tree-growing procedure where k 2, for 

any node vi {v1,v2,…,vk}, if i<k, vi’s blue parent is set to vi+1, else vi’s blue parent is set to s. 

And if i>1, vi’s red parent is set to vi-1, else vi’s red parent is set to s.  

When a normal ear (x,v1,…,vk,y) is found in a multi-tree-growing procedure where x, yC2, 

k  1 and x y  (“ x y ” means that node x lies before node y in C2.), for any node vi 

{v1,v2,…,vk}, if i<k, vi’s blue parent is set to vi+1, else vi’s blue parent is set to y. And if i>1, 

MTG algorithm 
1   for each node u in N 
2      D[u].con=0;  D[u].root= Null;  D[u].parent= Null; 
3   D[s].con=2;  D[s].root= s;  D[s].parent= Null;  
4   C2 = {s}; 
5   BFS is used to arrange all node IDs excluding s in Cx in level order; 
6   for each node u in N 
7      sort D[u].nbrlist in level order; 
8   if (there are nodes left in Cx ) 
9      for each node u in Cx 
10       for each neighbor node v of node u 
11          if (v=s) 
12             D[u].con=1;  D[u].root= u;  D[u].parent= s; 
13          else if (D[v].con>0 and D[v].root != D[u].root) 
14             D[u].con++; 
15             if(D[u].con=1) 
16                D[u].root=D[v].root;  D[u].parent=v; 
17             else if (D[u].con=2) 
18                construct an ear using u and v's upstream paths; 
19                for each 1-connected node e in the ear 
20                   D[e].con=2;  D[e].root=e;   
21                   set blue parent and red parent for e by ear augmentation rule; 
22                delete the ear nodes from Cx and insert them into C2 by node voltage rule; 
23                reassign each node’s new list index in C2 to the node’s voltage value; 
24                for each node w left in Cx              
25                   D[w].con=0;  D[w].root= Null;  D[w].parent= Null; 
26                goto 8; 
27 exit; 



2058           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

vi’s red parent is set to vi-1, else vi’s red parent is set to x. 

 

Start

For each node u in N
   D[u].con=0; D[u].root= Null; D[u].parent= Null;

   D[s].con=2;  D[s].root= s;  D[s].parent= Null; 

 C2 ={s};
BFS is used to arrange all node IDs excluding s in Cx in level order;

u =  Cx.head  

u=Null?
Yes

No

v =  D[u].nbrlist.head 

v=Null?

No

u =  Cx.next  

v=s?

No

Yes D[u].root= u;  D[u].parent= s; 
D[u].con=1;

D[v].con>0 and D[v].root != D[u].root

Yes

D[u].con++;

v =  D[u].nbrlist.next 

D[u].con=1?
Yes

D[u].root=D[v].root; D[u].parent=v;

No

construct an ear using u and v's upstream paths

for each 1-connected node e in the ear
   D[e].con=2;  D[e].root=e; 
   set blue parent and red parent for e by ear augmentation rule;

delete the ear nodes from Cx and insert them into C2 by node voltage rule

update the voltage of each node in C2 to its new list index in C2

for each node w left in Cx             
   D[w].con=0;  D[w].root= Null;  D[w].parent= Null;

Stop

Yes

No

For each node u in N
   sort D[u].nbrlist in level order;

 
Fig. 3. The flowchart of the MTG algorithm 

3.1.3 Node Voltage Rule 

The list index of a node ID in C2 is used as the voltage value for the node. If a sink ear 

(s,v1,…,vk,s) is found where sC2, the ear nodes (v1,v2,…,vk) will be deleted from Cx and 

added at the list tail of C2 in sequence, and the algorithm will then update the voltage value of 

each node in C2 to its new list index. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2059 

If a normal ear (x,v1,…,vk,y) is found where x,yC2 and x y , the ear nodes (v1,v2,…,vk) 

will be deleted from Cx and inserted before y in C2 sequentially, and the algorithm will then 

update the voltage value of each node in C2 to its new list index.  

The working of the MTG algorithm is illustrated on an example network shown in Fig. 4. 

The numbers in parenthesis represent the levels of nodes while those outside the parenthesis 

represent the node IDs. In Fig. 4 (a), a sink ear {s,1,2} is found and augmented. From Fig. 4 

(b) to Fig. 4 (c), two 1-connected trees {1,3,4,7,8} and {2,5,6} meet at node 9 and a normal ear 

{1,3,8,9,5,2} is found and augmented. Node 4, node 6 and node 7 will then be augmented in 

turn. The two complementary trees constructed at the end of the algorithm are shown in Fig. 4 

(d). 

 
Fig. 4. An example showing the working of the MTG algorithm 

4. Theoretical Analysis 

A Type-A 1-connected tree is defined as a 1-connected tree whose root is a 1-connected node 

in Cx which is a neighbor of s. A Type-B 1-connected tree is defined as a 1-connected tree 

whose root is a 2-connected node excluding s in C2. We analyze the algorithm as follows. 

Theorem 1. A sink ear can be found in the first round of multi-tree-growing procedure. Either 

a sink ear or a normal ear can be found in each round of multi-tree-growing procedure if there 

are nodes in Cx.  

Proof. In the initial stage, C2={s}, Cx =N\{s}, and all nodes in Cx are set 0-connected. In the 

first round of multi-tree-growing procedure, the 0-connected nodes in Cx will become 

1-connected with the blue tree (or red tree) level by level, therefore multiple Type-A 

1-connected trees grow in the nodes of Cx. Because the network is two-node-connected, at 

least two Type-A 1-connected trees will meet. When two Type-A 1-connected trees meet at a 

s

2,1

1

1,2

2

: blue parent

: red parent 

: temperary parent 

: neighbor 

0,0

0

1(1) 2(1)

3(2) 4(2) 5(2) 6(2)

7(3) 8(3)

(a)  nodes s,1, 2 are in 2-connected state,

  nodes 3-9 are in 0-connected state

9(3)

s

2,1

1

1,2

2

0,0

0

1(1) 2(1)

3(2) 4(2) 5(2) 6(2)

7(3) 8(3)

(b) nodes s,1,2 are in 2-connected state, nodes 3-8 are 

     in 1-connected state, node 9 is in 0-connected state

9(3)

s

2,1

1

1,2

6

0,0

0

1(1) 2(1)

3(2) 4(2) 5(2) 6(2)

7(3) 8(3) 9(3)

5,2

2

4,3

3

3,4

4

2,5

5

s

2,1

1

1,2

9

0,0

0

1(1) 2(1)

3(2) 4(2) 5(2) 6(2)

7(3) 8(3)

(d) all nodes are in 2-connected state

9(3)

5,2

2

4,3

5

3,4

6

2,5

7

5,3

4

5,2

3

2,6

8

B, R

V

B: blue path length 

R: red path length 

V: voltage value

(c) nodes s,1,2,3,8,9,5 are in 2-connected state,

     nodes 4,6,7 are in 0-connected state

 



2060           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

node u for the fist time, a sink ear appears which is composed of u’s upstream paths in the two 

trees and s. 

Suppose that an ear has been augmented in the nth (n 1) round of multi-tree-growing 

procedure and there are still nodes left in Cx, let’s consider the (n+1)th round of 

multi-tree-growing procedure. At the beginning of the (n+1)th round multi-tree-growing 

procedure, all nodes left in Cx are 0-connected (set at the end of the last round of 

multi-tree-growing procedure). The 0-connected nodes in Cx will become 1-connected with 

the blue tree (or red tree) level by level, therefore, multiple 1-connected trees grow in the 

nodes of Cx. Because the network is two-node-connected, at least two 1-connected trees will 

meet, and there are possibly three cases as follows. 

Case 1: If two Type-A 1-connected trees meet at a 0-connected node u for the fist time, a 

sink ear appears which is composed of u’s upstream paths in the two trees and s. 

Case 2: If two Type-B 1-connected trees meet at a 0-connected node u for the fist time, a 

normal ear appears which is composed of u’s upstream paths in the two trees. 

Case 3: If a Type-A 1-connected tree and a Type-B 1-connected tree meet at a 0-connected 

node u for the fist time, a normal ear appears which is composed of u’s upstream paths in the 

two trees and s. 

Therefore, either a normal ear or a sink ear can be found in the (n+1)th round of 

multi-tree-growing procedure. By induction, an ear can be found in each round of 

multi-tree-growing procedure until there are no nodes left in Cx. □ 

Theorem 2. The time complexity of the MTG algorithm is (| | (| | | |))O N N L . 

Proof. In the initial stage, the operations in line 2 cost time (| |)O N , the operations in line 5 

cost time (| | | |)O N L and the operations in line 7 cost time (| || |)O N L . 

The operations from line 11 to line 16 are used to visit one of u’s neighbors and these 

operations can finish in constant time. In a multi-tree-growing procedure, the neighbor list of 

each node in Cx is traversed at most once. Since the sum of the lengths of all nodes’ neighbor 

lists is ( )O L , the operations from line 11 to line 16 are performed at most ( )O L  times in a 

multi-tree-growing procedure. According to Theorem 1, the multi-tree-growing procedure 

will be executed (| |)O N times since each round of the procedure deletes at least one node 

from Cx. As a result, the time complexity for operations from line 11 to line 16 is (| || |)O N L . 

The operations from line 18 to line 25 are used to process an ear after it is found in a 

multi-tree-growing procedure. The running time of the operation in line 18 is (| |)O N  since 

the length of an ear is | |N  at the most. Similarly, the running time of the operations in each 

line between 19 and 25 in one multi-tree-growing procedure is (| |)O N  respectively. Since the 

multi-tree-growing procedure is executed (| |)O N  times, the time complexity of the 

operations from line 18 to line 25 is 2(| | )O N . 

Therefore, the time complexity of the MTG algorithm is (| | (| | | |))O N N L .  □ 

Suppose that the MTG algorithm terminates after K rounds of multi-tree-growing 

procedures, and we use C0(n), C1(n), C2(n) and Cx(n) to denote C0, C1, C2 and Cx after n rounds 

of multi-tree-growing procedures where n K , then they satisfy the following Theorem. 

Theorem 3. For any integer n ( 0 n K  ), Cx(n) is the complementary set of C2(n) with 

respect to the universal set of N, and C0(n), C1(n), C2(n) and Cx(n) satisfy the following 

constraints: 
 

C1(n)= and Cx(n)=C0(n)                                                      (3) 

C2(K)=N and Cx(K)=                                                          (4) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2061 

 

Proof. The theorem can be deduced easily from the node state rule and node voltage rule, so 

details are omitted here. □ 

Theorem 4. After n ( 0 n K  ) rounds of multi-tree-growing procedures, 2( ) \{ }u C n s  , 

node u has a directed path 
B

usP  (
R

usP , respectively) to s through the blue parent (red parent, 

respectively) attribute of node, and the path consists of nodes in C2(n) with monotonically 

increasing (decreasing, respectively) voltage values (excluding s).  

Proof. The theorem can be deduced easily from Theorem 1, the ear augmentation rule and 

node voltage rule, so details are omitted here.  □ 

The correctness of the MTG algorithm is proved in Theorem 5. 

Theorem 5. The MTG algorithm terminates with a pair of complementary trees. 

Proof. According to Theorem 1 and Theorem 2, the algorithm can terminate in finite time. 

When the algorithm terminates, a pair of complementary trees can be constructed, which can 

be proved in a similar way as in [11]. Specifically, when the algorithm terminates, let B and R 

denote the two spanning graphs using the blue parent and red parent attributes of nodes 

respectively. According to Theorem 4, B and R satisfy two constraints: 1) There is no cycle in 

B (R, respectively) for a cycle would imply that the voltage values of the nodes traversed 

would decrease and then increase, 2) B (R, respectively) is a connected graph of G. Therefore, 

B and R are both spanning trees rooted at s.  

In the same time, for any node u N , u’s path 
B

usP  in B is node-disjoint with u’s path 
R

usP  

in R, since 
B

usP  consists of monotonically increasing voltage values and 
R

usP  consists of 

monotonically decreasing voltage values excluding s. Therefore B and R are a pair of 

complementary trees.  □ 

We analyze the path length performance of the algorithm as follows. 

Theorem 6. In each round of multi-tree-growing procedure before the MTG algorithm 

terminates, for any 0-connected node u in level h (uCx and h 1), when it is u’s turn to be 

processed, u will become 1-connected with a node in level (h-1). 

Proof. Without loss of generality, let’s consider the nth (n 0) round of multi-tree-growing 

procedure. 

At the beginning of this multi-tree-growing procedure, all nodes in Cx are 0-connected and 

these nodes are arranged in node level order. Suppose that the minimum level number for the 

nodes in Cx is m ( 1m  ), so the nodes in level (m-1) are not in Cx and they must have been set 

2-connected and stored in C2. And because any node’s neighbor list is arranged in level order, 

all nodes of level m in Cx will be processed and become 1-connected with the nodes of level 

(m-1).  

Suppose that the nodes of level (m+i) in Cx have become 1-connected with nodes of level 

(m+i-1) in this round of multi-tree-growing procedure, then the nodes of level (m+i) not in Cx 

must have become 2-connected and stored in C2, so all nodes of level (m+i) in N are connected. 

Since any node’s neighbor list is arranged in level order, the nodes of level (m+i+1) in Cx will 

be processed and become 1-connected with the nodes of level (m+i). By induction, Theorem 6 

holds true.  □ 

Theorem 7. In each round of multi-tree-growing procedure before the MTG algorithm 

terminates, for any node u in a 1-connected tree T rooted at node r, let lu and lr denote the levels 

of u and r respectively, and du denotes the relative distance (hops) from node u to r in T, then lu , 

lr and du  satisfy the following constraint. 
 



2062           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

lu=lr+du    u r                                                              (5) 
 

Proof. Theorem 7 can be deduced easily from Theorem 6.  □ 

Theorem 8. When two 1-connected trees T1 and T2 meet for the first time at node e in a 

multi-tree-growing procedure, let p1 (p2, respectively) denote e’s upstream path in T1 (T2, 

respectively) while r1 (r2, respectively) denote the root of T1 (T2, respectively), then p1 (p2, 

respectively) is the shortest path from e to r1 (r2, respectively) in T1 (T2, respectively).  

Proof. Let u (uT1) denote e’s neighbor node in p1 and suppose that e has another neighbor 

node v in T1 with shorter upstream path to r1 than u’s. Let pu and pv denote u and v’s upstream 

paths in T1 respectively, and du and dv denote the lengths of pu and pv respectively, and lu and lv 

denote the levels of u and v respectively, then du  dv. According to the ear construction 

method of the algorithm, u is the first node in e’s neighbor list which lies on T1, and because 

the nodes in e’s neighbor list are arranged in level order, lu lv. Therefore, du dv by Theorem 

7, contradicting with the previous assumption. As a result, p1 is the shortest path from e to r1 in 

T1. Similarly, p2 is the shortest path from e to r2 in T2.  □ 

The work in [11] stated that a network must be two-node-connected to obtain two 

complementary trees, we make the supplement that the MTG algorithm also works for a 

special kind of topology called approximate two-node-connected network.   

Definition: If a network is composed of n (n 2) two-node-connected blocks and the sink 

node is the only common node for all blocks, we call this kind of network an approximate 

two-node-connected network. 

Fig. 5 shows an example of an approximate two-node-connected network which is 

composed of three two-node-connected blocks {s,1,2,3,4}, {s,5,6,7} and {s,8,9,10}. An 

approximate two-node-connected network is in fact one-node-connected because the sink 

node is a cutting node for the network.  

 
Fig. 5. An approximate two-node-connected network composed of 3 blocks 

 

Theorem 9. The MTG algorithm can construct two complementary trees for an approximate 

two-node-connected network. 

Proof. We consider an approximate two-node-connected network ( , , )P N L s  composed of n 

(n 2) two-node-connected blocks {B1, B2…Bn}. 

1) Two local complementary trees can form in each block of P. In a round of 

multi-tree-growing procedure, multiple 1-connected trees grow in Cx continuously. Because 

all blocks of P are two-node-connected and they have no common node except s, at least two 

1-connected trees can meet and therefore form an ear in a block before the multi-tree-growing 

procedure terminates. An ear can be found in a block during a multi-tree-growing procedure so 

s1
2

3
4

5

6
7

8

: neighbor of the node

9

10

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2063 

long as there are nodes in Cx. The ear discovery and augmentation procedure will happen 

alternatively and repeatedly in different blocks until two complementary trees form in each 

block of P.  

2) The union of all local complementary trees in each block forms two global 

complementary trees for P. Let B

iT  ( R

iT , respectively) denote the blue subtree (red subtree, 

respectively) constructed in Bi (1 i n  ) which is rooted at s and spans all nodes of Bi, and let 

B (R, respectively) denote the union of B

iT  ( R

iT , respectively) for 1 i n  . According to the 

definition of Bi,
B

iT and R

iT  (1 i n  ), B (R, respectively) is a spanning tree for P. On the other 

side, for any node uP, u has two node-disjoint paths to s in the block containing u, therefore, 

B and R are complementary trees for P.  □ 

5. Performance Evaluation 

We demonstrate the effectiveness of the MTG algorithm by comparing the results to those 

obtained from the RKK, XCT and BR algorithms mentioned in section 1.  

The performance metrics considered are: (1) algorithm solution time, (2) average 

blue/red/dual path length, (3) average minimum/maximum path length, (4) blue/red tree depth. 

The solution time of an algorithm is simply the running time of its program to obtain a solution. 

The average minimum (maximum, respectively) path length refers to the lowest (highest, 

respectively) path length among the blue path and red path, averaged over all nodes in the 

network.  

Two kinds of network topologies are used to test these algorithms, random and grid. A link 

between two nodes exists if the distance between them is no more than 2  units. For random 

networks, we employ 100, 200 and 300 as the network size respectively, where N nodes are 

distributed in a square region of side 10 units. For grid topologies, 5×5, 10×10 and 15×15 

networks are used where nodes are placed on a two-dimensional grid at integer coordinates. 

All networks generated are two-node-connected and the sink node is placed at the origin. We 

simulated these algorithms using a C program on a Pentium 4 desktop with 1 G memory. For 

each network size in random networks, 20 different topologies were simulated and the average 

results are reported.  

The results of path length and tree depth for the four algorithms are shown in Fig. 6-Fig. 9. 

We can observe from Fig. 6 and Fig. 7 that the MTG and BR algorithms have similar path 

length performance, which is much better than that of the other two algorithms, especially in 

large-scale networks. The performance results from Fig. 8 and Fig. 9 follow similar trend, in 

other words, the MTG and BR algorithms perform well on both complementary trees in terms 

of tree depth, compared with the other two algorithms. 

The results of running time for the four algorithms are shown in Table 2, where a random 

network with 100 (200 and 300, respectively) nodes is denoted as R-100 (R-200 and R-300, 

respectively). We can observe from Table 2 that, the BR and XCT algorithms need to cost 

large time to construct two complementary trees especially in large-scale networks, while the 

MTG and RKK algorithms can finish well under 50 ms for all scenarios, so the MTG and RKK 

algorithms perform much better than the other two algorithms in terms of running time.  

In summary, the MTG and BR algorithms have similar path length performance which is 

much better than that of the other two algorithms, but the MTG algorithm costs far less 

running time (under 50 ms for all scenarios) than the BR algorithm. Therefore, in the four 

algorithms, the MTG algorithm can perform well in both running time and average path length, 

suitable for industrial wireless sensor networks scenarios. 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%a4%a7%e8%a7%84%e6%a8%a1%e7%bd%91%e7%bb%9c&tjType=sentence&style=&t=large-scale+network
http://dict.cnki.net/dict_result.aspx?searchword=%e5%a4%a7%e8%a7%84%e6%a8%a1%e7%bd%91%e7%bb%9c&tjType=sentence&style=&t=large-scale+network


2064           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

 

 
                (a) 100-node network                   (b) 200-node network                    (c) 300-node network 

Fig. 6. Average path length on random networks 

 

 
               (a) 5×5 network                              (b) 10×10 network                        (c) 15×15 network 

Fig. 7. Average path length on grid networks 

 

 
                  (a) 100-node network                   (b) 200-node network                    (c) 300-node network 

Fig. 8. Blue/red tree depth on random networks 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2065 

 
(a) 5×5 network                               (b)10×10 network                         (c) 15×15 network 

Fig.9. Blue/red tree depth on grid networks 

 

Table 2. Running time (ms) of different complementary trees algorithms on random/grid networks 
Network Average solution time Network Average solution time 

RKK XCT BR MTG RKK XCT BR MTG 

R-100 <1 594.50 427.70 7.05 5×5 <1 31.90 31.50 1.00 
R-200 2.15 8560.90 7867.00 18.60 10×10 <1 1152.25 1155.30 6.25 
R-300 6.55 37604.20 35495.85 38.35 15×15 1.00 10920.55 10938.65 20.60 

6. Conclusion 

In this paper, we proposed a complementary trees routing algorithm (MTG algorithm) with 

time complexity (| | (| | | |))O N N L . Effective measures have been taken to reduce the 

average path length, hence reduce the data delivery delay for nodes. Compared with existing 

known complementary trees algorithms, the MTG algorithm can perform well in both running 

time and average path length especially in large-scale networks, as evidenced by the 

simulation. In addition, the MTG algorithm can also work for some special 

one-node-connected networks, as demonstrated in the theoretical analysis. These advantages 

make the algorithm practical for industrial wireless sensor networks. 

With regard to the known wireless communication standards for industrial automation such 

as WirelessHart, we further envisage that the complementary trees approach can also be used 

to facilitate the following works: 

1) TDMA scheduling scheme. For example, the transmitting activities of nodes can be 

scheduled level by level, or tree by tree. 

2) Parallel data delivery. For example, two nodes in different levels can transmit 

simultaneously to enhance the spatial reuse of the network, hence reduce the data delivery 

delay. 

We will conduct these works in our future work.  

References 

[1] HART Communication Foundation, “WirelessHART,” http://WirelessHART.hartcomm.org/, Feb. 

2010. 

[2] R.C. Shah, J.M. Rabaey, “Energy Aware Routing for Low Energy Ad Hoc Sensor Networks,”  in 

Proc. of  IEEE Wireless Communications and Networking Conference, pp. 350-355, Mar. 17-21, 

2002. Article (CrossRef Link) 

[3] X.X. Huang, Y.G. Fang, “Multiconstrained QoS Multipath Routing in Wireless Sensor Networks,” 

Wireless Networks, vol. 14, no. 4, pp. 465-478, Aug. 2008. Article (CrossRef Link) 

http://dx.doi.org/10.1109/WCNC.2002.993520
http://dx.doi.org/10.1007/s11276-006-0731-9


2066           Liu et al.: Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor 

[4] Y.S. Chen, T.Y. Juang, Y.W. Lin, I.C. Tsai, “A Low Propagation Delay Multi-path Routing 

Protocol for Underwater Sensor Networks,” Journal of Internet Technology, vol. 11, no. 2, pp. 

153-165, Mar. 2010. 

[5] Y.M. Lu, V.W.S. Wong, “An Energy-Efficient Multipath Routing Protocol for Wireless Sensor 

Networks,” International Journal of Communication Systems, vol. 20, no. 7, pp. 747-766, Jul. 

2007. Article (CrossRef Link) 

[6] S.U. Rehman, W.C. Song, G.L. Park, “Associativity-Based On-Demand Multi-Path Routing in 

Mobile Ad Hoc Networks,” KSII Transactions on Internet and Information Systems,  vol. 3,  no. 5,   

pp. 475-491, Oct. 2009. Article (CrossRef Link) 

[7] S. Oh, D. Kim, H. Kang, H.J. Jeong, “SMSR: A Scalable Multipath Source Routing Protocol for 

Wireless Sensor Networks,” in Proc. of 6th International Conference on Ubiquitous Intelligence 

and Computing, pp. 121-135, Jul. 07-09, 2009. Article (CrossRef Link) 

[8] K. Xiong, Z.D. Qiu, Y.C. Guo, H.K. Zhang, “Multi-Constrained Shortest Disjoint Paths for 

Reliable QoS Routing,” ETRI Journal, vol. 31, no. 5, pp. 534-544, Oct. 2009. Article (CrossRef 

Link) 

[9] L. Shu, Y. Zhang, Z.W. Yu, L.T. Yang, M. Hauswirth, N. Xiong, “Context-Aware Cross-Layer 

Optimized Video Streaming in Wireless Multimedia Sensor Networks,” Journal of 

Supercomputing, vol. 54, no. 1, pp. 94-121, Oct. 2010. Article (CrossRef Link) 

[10] A.M. Abbas, B.N. Jain, “Path Diminution in Node-Disjoint Multipath Routing for Mobile Ad Hoc 

Networks is Unavoidable with Single Route Discovery,” International Journal of Ad Hoc and 

Ubiquitous Computing, vol. 5, no. 1, pp. 7-21, 2010. Article (CrossRef Link) 

[11] M. Medard, S.G. Finn, R.A. Barry, R.G. Gallager, “Redundant Trees for Preplanned Recovery in 

Arbitrary Vertex-Redundant or Edge-Redundant Graphs,” IEEE-ACM Transactions on 

Networking,   vol. 7, no. 5, pp. 641-652, Oct. 1999. Article (CrossRef Link) 

[12] W.Y. Zhang, G.L. Xue, J. Tang, K. Thulasiraman, “Linear Time Construction of Redundant Trees 

for Recovery Schemes Enhancing QoP and QoS,” in Proc. of 24th Annual Joint Conference of the 

IEEE Computer and Communications Societies, pp. 2702-2710, Mar. 13-17, 2005. Article 

(CrossRef Link) 

[13] W.Y. Zhang, G.L. Xue, J. Tang, K. Thulasiraman, “Faster Algorithms for Construction of 

Recovery Trees Enhancing QoP and QoS,” IEEE-ACM Transactions on Networking, vol. 16, no. 3, 

pp. 642-655, June 2008. Article (CrossRef Link) 

[14] S. Ramasubramanian, M. Harkara, M. Krunz, “Linear Time Distributed Construction of Colored 

Trees for Disjoint Multipath Routing,” Computer Networks, vol. 51, no. 10, pp. 2854-2866, Jul.  

2007. Article (CrossRef Link) 

[15] S. Ramasubramanian, H. Krishnamoorthy, M. Krunz, “Disjoint Multipath Routing using Colored 

Trees,” Computer Networks, vol. 51, no. 8, pp. 2163-2180, June 2007. Article (CrossRef Link) 

[16] G.L. Xue, L. Chen, K. Thulasiraman, “Quality-of-Service and Quality-of-Protection Issues in 

Preplanned Recovery Schemes using Redundant Trees,” IEEE Journal on Selected Areas in 

Communications, vol. 21, no. 8, pp. 1332-1345, Oct. 2003. Article (CrossRef Link). 

[17] R. Balasubramanian,  S. Ramasubramanian, “Minimizing Average Path Cost in Colored Trees for 

Disjoint Multipath Routing,” in Proc. of 15th International Conference on Computer 

Communications and Networks, pp. 185-190, Oct. 09-11, 2006. Article (CrossRef Link). 

 

 
 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1002/dac.843
http://dx.doi.org/10.3837/tiis.2009.05.004
http://dx.doi.org/10.1007/978-3-642-02830-4_11
http://dx.doi.org/10.4218/etrij.09.0108.0531
http://dx.doi.org/10.4218/etrij.09.0108.0531
http://dx.doi.org/10.1007/s11227-009-0321-6
http://dx.doi.org/10.1504/IJAHUC.2010.029999
http://dx.doi.org/10.1109/90.803380
http://dx.doi.org/10.1109/INFCOM.2005.1498553
http://dx.doi.org/10.1109/INFCOM.2005.1498553
http://dx.doi.org/10.1109/TNET.2007.900705
http://dx.doi.org/10.1016/j.comnet.2006.11.029
http://dx.doi.org/10.1016/j.comnet.2006.09.019
http://dx.doi.org/10.1109/JSAC.2003.816597
http://dx.doi.org/10.1109/ICCCN.2006.286270


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2067 

 
 

 

Luming Liu is currently working towards his Ph.D. degree at School of Information 

Science and Engineering, East China University of Science and Technology, China. 

His research interests are in the areas of wireless networks in industrial automation. 

 
 

 

Zhihao Ling is a professor at East China University of Science and Technology 

(ECUST), China. He received his Ph.D. degree in Control Science and Engineering 

from ECUST in 2005. He is an executive director of Process Control and 

Instrumentation technical committee of China Instrument and Control Society and a 

director of Shanghai Association of Automation. His research interest is networked 

measurement and control system in industrial automation. 

 

Yun Zuo is currently working towards her Ph.D. degree at School of Information 

Science and Engineering, East China University of Science and Technology, China. 

Her research interests include routing and scheduling methods in industrial wireless 

sensor networks. 

 


