Inhibitory Effect of Prunus persica Flesh Extract (PPFE) on Melanogenesis through the Microphthalmia-associated Transcription Factor (MITF)-mediated Pathway

  • Received : 2011.02.18
  • Accepted : 2011.03.08
  • Published : 2011.03.31

Abstract

Novel tyrosinase inhibitors are important for pigmentation in the skin. Following extraction of tyrosinase inhibitors from edible vegetables or fruits, we found that the Prunus persica flesh extract (PPFE) exhibited potential inhibitory activity for melanogenesis. PPFE showed tyrosinase inhibitory activity in an enzymatic assay and PPFE also significantly inhibited the melanin formation in cultured mouse melan-a cells. Moreover, real-time RT-PCR analysis revealed that the inhibition of melanin production by PPFE was closely related to marked suppression of mRNA expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2) in melan-a cells. Further investigation found that the modulation of tyrosinase expression by PPFE was associated with the transcriptional regulation of the microphthalmia-associated transcription factor (MITF). PPFE inhibited the promoter activity of MITF and suppressed MITF mRNA expression in melan-a cells. These results indicate that PPFE down-regulates melanogenesis-associated gene expression through MITF-mediated transcriptional regulation and these events might be related to the hypopigmentary effects of PPFE.

Keywords

References

  1. Aksan, I. and Goding, C.R., Targeting the microphthalmia basic helixloop- helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell Biol. 18, 6930-6938 (1998). https://doi.org/10.1128/MCB.18.12.6930
  2. Bentley, N.J., Eisen, T., and Goding, C.R., Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell Biol. 14, 7996-8006 (1994).
  3. Briganti, S., Camera, E., and Picardo, M., Chemical and instrumental approaches to treat hyperpigmentation. Pigment. Cell Res. 16, 101-110 (2003). https://doi.org/10.1034/j.1600-0749.2003.00029.x
  4. Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P., and Cappelloni, M., Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agric. Food Chem. 50, 5458-5462 (2002). https://doi.org/10.1021/jf0202584
  5. Choi, Y.G., Bae, E.J., Kim, D.S., Park, S.H., Kwon, S.B., Na, J.I., and Park, K.C., Differential regulation of melanosomal proteins after hinokitiol treatment. J. Dermatol. Sci. 43, 181-188 (2006). https://doi.org/10.1016/j.jdermsci.2006.05.003
  6. Costin, G.E. and Hearing, V.J., Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976-994 (2007). https://doi.org/10.1096/fj.06-6649rev
  7. Curto, E.V., Kwong, C., Hermersdorfer, H., Glatt, H., Santis, C., Virador, V., Hearing, V.J., and Jr. Dooley, T.P, Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem. Pharmacol. 57, 663-672 (1999). https://doi.org/10.1016/S0006-2952(98)00340-2
  8. del Marmol, V. and Beermann, F., Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165-168 (1996). https://doi.org/10.1016/0014-5793(96)00109-3
  9. Eves, P.C., MacNeil, S., and Haycock, J.W., a-Melanocyte stimulating hormone, inflammation and human melanoma. Peptides 27, 444-452 (2006). https://doi.org/10.1016/j.peptides.2005.01.027
  10. Fukuda, T., Ito, H., Mukainaka, T., Tokuda, H., Nishino, H., and Yoshida, T., Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol. Pharm. Bull. 26, 271-273 (2003). https://doi.org/10.1248/bpb.26.271
  11. Goding, C.R., Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712-1728 (2000).
  12. Hallsson, J.H., Haflidadottir, B.S., Stivers, C., Odenwald, W., Arnheiter, H., Pignoni, F., and Steingrimsson, E., The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development. Genetics 167, 233-241 (2004). https://doi.org/10.1534/genetics.167.1.233
  13. Hearing, V.J. and Tsukamoto, K., Enzymatic control of pigmentation in mammals. FASEB J. 5, 2902-2909 (1991).
  14. Hemesath, T.J., Steingrimsson, E., McGill, G., Hansen, M.J., Vaught, J., Hodgkinson, C.A., Arnheiter, H., Copeland, N.G., Jenkins, N.A., and Fisher, D.E., Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8, 2770-2780 (1994). https://doi.org/10.1101/gad.8.22.2770
  15. Kim, D.S., Park, S.H., Kwon, S.B., Li, K., Youn, S.W., and Park, K.C., (−)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production. Arch. Pharm. Res. 27, 334-339 (2004). https://doi.org/10.1007/BF02980069
  16. Kim, Y.H., Yang, H.E., Park, B.K., Heo, M.Y., Jo, B.K., and Kim, H.P., The extract of the flowers of Prunus persica, a new cosmetic ingredient, protects against solar ultraviolet-induced skin damage in vivo. J. Cosmet. Sci. 53, 27-34 (2002).
  17. Kim, Y.M., Yun, J., Lee, C.K., Lee, H., Min, K.R., and Kim, Y., Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 277, 16340-16344 (2002). https://doi.org/10.1074/jbc.M200678200
  18. Kubo, I., Kinst-Hori, I., Chaudhuri, S.K., Kubo, Y., Scanchez, Y., and Ogura, T., Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg. Med. Chem. 8, 1749-1755 (2000). https://doi.org/10.1016/S0968-0896(00)00102-4
  19. Kuzumaki, T., Matsuda, A., Wakamatsu, K., Ito, S., and Ishikawa, K., Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp. Cell Res. 207, 33-40 (1993). https://doi.org/10.1006/excr.1993.1159
  20. Lee, C.K., Park, K.K., Hwang, J.K., Lee, S.K., and Chung, W.Y., Extract of Prunus persica flesh (PPFE) improves chemotherapeutic efficacy and protects against nephrotoxicity in cisplatin-treated mice. Phytother. Res. 23, 999-1005 (2009). https://doi.org/10.1002/ptr.2740
  21. Lee, C.K., Park, K.K., Hwang, J.K., Lee, S.K., and Chung, W.Y., The extract of Prunus persica flesh (PPFE) attenuates chemotherapyinduced hepatotoxicity in mice. Phytother. Res. 22, 223-227 (2008). https://doi.org/10.1002/ptr.2296
  22. Lee, C.K., Park, K.K., Hwang, J.K., Lee, S.K., and Chung, W.Y., The pericarp extract of P. persica attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in mice. J. Med. Food 11, 302-306 (2008). https://doi.org/10.1089/jmf.2007.545
  23. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Method 25, 402-408 (1996).
  24. Maeda, K. and Fukuda, M., Arbutin: mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 276, 765-769 (1996).
  25. Masamoto, Y., Iida, S., and Kubo, M., Inhibitory effect of Chinese crude drugs on tyrosinase. Planta Med. 40, 361-365 (1980). https://doi.org/10.1055/s-2008-1074986
  26. Ministry of Health and Welfare, The Japanese Pharmacopoeia 14th Edition, ed. by the Ministry of Health, Labour and Welfare, Tokyo, Japan, 2001, pp. D-803.
  27. Mosher, D.B., Pathak, M.A., and Fitzpatrick, T.B., Uptate: Dermatology in General Medicine, In: Fitzpatrick, T.B., Eisen, A.Z., Wolf, K., Freedberg, I.M., and Austen, K.F., Eds.; McGraw-Hill: New York, NY, 1983, pp. 205.
  28. No, J.K., Kim, Y.J., Lee, J.S., and Chung, H.Y., Inhibition of melanogenic activity by 4,4'-dihydroxybiphenyl in melanoma cells. Biol. Pharm. Bull. 29, 14-16 (2006). https://doi.org/10.1248/bpb.29.14
  29. Parvez, S., Kang, M., Chung, H.S., Cho, C., Hong, M.C., Shin, M.K., and Bae, H., Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res. 20, 921-934 (2006). https://doi.org/10.1002/ptr.1954
  30. Perez-Gilabert, M. and Garcia-Carmona, F., Dimethyl sulfide, a volatile flavor constituent, is a slow-binding inhibitor of tyrosinase. Biochem. Biophys. Res. Commun. 285, 257-261 (2001). https://doi.org/10.1006/bbrc.2001.5189
  31. Seo, S.Y., Sharma, V.K., and Sharma, N., Mushroom tyrosinase: recent prospects. J. Agric. Food Chem. 51, 2837-2853 (2003). https://doi.org/10.1021/jf020826f
  32. Shimizu, K., Kondo, R., Sakai, K., Lee, S.H., and Sato, H., The inhibitory components from Artocarpus incisus on melanin biosynthesis. Planta Med. 64, 408-412 (1998). https://doi.org/10.1055/s-2006-957470
  33. Shin, N.H., Ryu, S.Y., Choi, E.J., Kang, S.H., Chang, I.M., Min, K.R., and Kim, Y., Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 243, 801-803 (1998). https://doi.org/10.1006/bbrc.1998.8169
  34. Tsukamoto, K., Hirata, S., Osada, A., and Kitamura, R., Detection of circulating melanoma cells by RT-PCR amplification of three different melanocyte-specific mRNAs in a mouse model. Pigment. Cell Res. 13, 185-189 (2000). https://doi.org/10.1034/j.1600-0749.2000.130311.x
  35. Virador, V.M, Kobayashi, N., Matsunaga, J., and Hearing, V.J., A standardized protocol for assessing regulators of pigmentation. Anal. Biochem. 270, 207-219 (1999). https://doi.org/10.1006/abio.1999.4090
  36. Widlund, H.R. and Fisher, D.E., Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22, 3035-3041 (2003). https://doi.org/10.1038/sj.onc.1206443
  37. Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z., and Fisher, D.E., c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301-312 (2000).
  38. Xu, W., Gong, L., Haddad, M.M., Bischof, O., Campisi, J., Yeh, E.T., and Medrano, E.E., Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitinconjugating enzyme hUBC9. Exp. Cell Res. 255, 135-143 (2000). https://doi.org/10.1006/excr.2000.4803
  39. Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., and Shibahara, S., Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Mol. Cell Biol. 14, 8058-8070 (1994). https://doi.org/10.1128/MCB.14.12.8058
  40. Yasumoto, K., Yokoyama, K., Takahashi, K., Tomita, Y., and Shibahara, S., Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272, 503-509 (1997). https://doi.org/10.1074/jbc.272.1.503
  41. Yoshimura, M., Watanabe, Y., Kasai, K., Yamakoshi, J., and Koga, T., Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation. Biosci. Biotechnol. Biochem. 69, 2368-2373 (2005). https://doi.org/10.1271/bbb.69.2368