DOI QR코드

DOI QR Code

Competitive Adsorption of CO2 and H2O Molecules on the BaO (100) Surface: A First-Principle Study

  • Kwon, Soon-Chul (School of Civil and Environmental Engineering, Georgia Institute of Technology) ;
  • Lee, Wang-Ro (Faculty of Liberal Education, Chonbuk National University) ;
  • Lee, Han-Na (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, J-Hoon (Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University)
  • Received : 2010.12.21
  • Accepted : 2011.01.21
  • Published : 2011.03.20

Abstract

$CO_2$ adsorption on mineral sorbents has a potential to sequester $CO_2$. This study used a density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) in the presence of $H_2O$ to determine the role of $H_2O$ on the $CO_2$ adsorption properties on the ($2{\times}2$; $11.05\;{\AA}{\times}11.05\;{\AA}$) BaO (100) surface because BaO shows a high reactivity for $CO_2$ adsorption and the gas mixture of power plants generally contains $CO_2$ and $H_2O$. We investigated the adsorption properties (e.g., adsorption energies and geometries) of a single $CO_2$ molecule, a single $H_2O$ molecule on the surface to achieve molecular structures and molecular reaction mechanisms. In order to evaluate the coordinative effect of $H_2O$ molecules, this study also carried out the adsorption of a pair of $H_2O$ molecules, which was strongly bounded to neighboring (-1.91 eV) oxygen sites and distant sites (-1.86 eV), and two molecules ($CO_2$ and $H_2O$), which were also firmly bounded to neighboring sites (-2.32 eV) and distant sites (-2.23 eV). The quantum mechanical calculations show that $H_2O$ molecule does not influence on the chemisorption of $CO_2$ on the BaO surface, producing a stable carbonate due to the strong interaction between the $CO_2$ molecule and the BaO surface, resulting from the high charge transfer (-0.76 e).

Keywords

References

  1. International Energy Agency OECD/IEA, Paris. 2002a.
  2. Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. Fuel 2007, 86, 2204. https://doi.org/10.1016/j.fuel.2007.06.001
  3. Meisen, A.; Shuai, X. S. Energy Conversion and Management1997, 38, S37. https://doi.org/10.1016/S0196-8904(96)00242-7
  4. Niswander, R. H.; Edwards, D. J.; Dupart, M. S.; Tse, J. P.Separation Science and Technology 1993, 28, 565. https://doi.org/10.1080/01496399308019507
  5. Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Industrial & Engineering Chemistry Research 1999, 38, 3917. https://doi.org/10.1021/ie9901630
  6. Freund, H. J.; Roberts, M. W. Surface Science Reports 1996, 25,225. https://doi.org/10.1016/S0167-5729(96)00007-6
  7. Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R.; Marshall, M.Adsorption-Journal of the International Adsorption Society 2008,14, 415. https://doi.org/10.1007/s10450-007-9100-y
  8. Na, B. K.; Koo, K. K.; Eum, H. M.; Lee, H.; Song, H. K. KoreanJournal of Chemical Engineering 2001, 18, 220. https://doi.org/10.1007/BF02698463
  9. Broqvist, P.; Gronbeck, H.; Fridell, E.; Panas, I. Journal of Physical Chemistry B 2004, 108, 3523. https://doi.org/10.1021/jp036549c
  10. Karlsen, E. J.; Nygren, M. A.; Pettersson, L. G. M. Journal of Physical Chemistry B 2003, 107, 7795. https://doi.org/10.1021/jp0346716
  11. Tutuianu, M.; Inderwildi, O. R.; Bessler, W. G.; Warnatz, J. Journalof Physical Chemistry B 2006, 110, 17484. https://doi.org/10.1021/jp055268x
  12. Broqvist, P.; Panas, I.; Gronbeck, H. Journal of Physical ChemistryB 2005, 109, 15410. https://doi.org/10.1021/jp053178m
  13. Broqvist, P.; Panas, I.; Fridell, E.; Persson, H. Journal of PhysicalChemistry B 2002, 106, 137. https://doi.org/10.1021/jp0126457
  14. Gronbeck, H. Journal of Physical Chemistry B 2006, 110, 11977. https://doi.org/10.1021/jp0616415
  15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Chemical Applications ofDensity-Functional Theory 1996, 629, 453. https://doi.org/10.1021/bk-1996-0629.ch030
  16. $DMol^{3}$ Accelrys, Inc.: San Diego 2005.
  17. Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  18. Kwon, S.; Hwang, J.; Lee, H.; Lee, W. R. Bulletin of the KoreanChemical Society 2010, 31, 2219. https://doi.org/10.5012/bkcs.2010.31.8.2219
  19. Odelius, M. Physical Review Letters 1999, 82, 3919. https://doi.org/10.1103/PhysRevLett.82.3919

Cited by

  1. O-Saturated BaO(1 0 0) and Induced Barium Surface Dissociation vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10000
  2. surfaces pp.2050-7496, 2018, https://doi.org/10.1039/C8TA09491H
  3. Surface chemistry of carbon dioxide revisited vol.71, pp.4, 2011, https://doi.org/10.1016/j.surfrep.2016.09.001