DOI QR코드

DOI QR Code

Spectroscopic Properties of Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside in Aerosol-OT Reverse Micelles

  • Park, Hyoung-Ryun (Department of Chemistry and Research Institute of Basic Science, Chonnam National University) ;
  • Liu, Hai-Bo (Department of Chemistry, and Research Institute of Life Science, Gyeongsang National University) ;
  • Shin, Sung-Chul (Department of Chemistry, and Research Institute of Life Science, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemical Education, and Research Institute of Life Science, Gyeongsang National University) ;
  • Bark, Ki-Min (Department of Chemical Education, and Research Institute of Life Science, Gyeongsang National University)
  • Received : 2010.12.31
  • Accepted : 2011.01.20
  • Published : 2011.03.20

Abstract

The anomalous spectroscopic properties of quercetin-3-O-rhamnoside (QCRM) and quercetin-3-O-rutinoside (QCRT) in AOT reverse micelle were studied. The excited state intramolecular proton transfer (ESIPT) occurs through the strong hydrogen bond between the -OH at position 5 and the carbonyl oxygen. Because the ESIPT can only happens in the $S_1$ state and the Franck-Condon factor involved in the $S_2\;{\rightarrow}\;S_1$ internal conversion is small, the $S_2\;{\rightarrow}\;S_o$ emission alone appears. Because the molecular planarity is improved at the interior of the micelle, the excited state intramolecular charge transfer in the $S_1$ state is extended, and the excited state is more tolerable for any quenching effects in the micelle. Therefore, an $S_1\;{\rightarrow}\;S_o$ emission was newly discovered under this micelle microenvironment. For the $S_2\;{\rightarrow}\;S_o$ emission, the quantum yields increase but the quantum yield of the $S_1\;{\rightarrow}\;S_o$ emission approximately decreases as the water concentration in the micelle increases.

Keywords

References

  1. Thompson, R. S.; Jacques, D.; Haslam, E.; Tanner, R. J. N. J. Chem. Soc. Perkin Trans. 1972, 1, 1387.
  2. Jovanovic, S. V.; Steenken, S; Tosic, M.; Marjanovic, B.; Simic,M. G. J. Am. Chem. Soc. 1994, 116, 4846. https://doi.org/10.1021/ja00090a032
  3. Middleton, E., Jr.; Kandaswami, C. The Impact of Plant Flavonoidson Mammalian Biology: Implications for Immunity, Inflammationand Cancer; Harborne, J. B., Ed.; Chapman and Hall: London,UK, 1986; p 619.
  4. Zare, H. R.; Namazian, M.; Nasirizadeh, N. J. Electroanal. Chem.2005, 584, 77. https://doi.org/10.1016/j.jelechem.2005.07.005
  5. Falkovskaia, E.; Sengupta, P. K.; Kasha, M. Chem. Phys. Lett.1998, 297, 109. https://doi.org/10.1016/S0009-2614(98)01112-9
  6. Sengupta, P. K.; Kasha, M. Chem. Phys. Lett. 1979, 68, 382. https://doi.org/10.1016/0009-2614(79)87221-8
  7. Smith, G. J.; Markham, K. R. J. Photochem. Photobiol. A 1998,118, 99. https://doi.org/10.1016/S1010-6030(98)00354-2
  8. Cornard, J. P.; Boudet, A. C.; Merlin, J. C. J. Mol. Struct. 1999,508, 37. https://doi.org/10.1016/S0022-2860(99)00004-6
  9. Liu, H. B.; Daun, Y.; Shin, S. C.; Park, H. R.; Park, J. K.; Bark, K.M. Photochem. Photobiol. 2009, 85, 934. https://doi.org/10.1111/j.1751-1097.2009.00550.x
  10. Bilski, P. L.; Martinez, J.; Koker, E. B.; Chignell, C. F. Photochem.Photobiol. 1998, 68, 20. https://doi.org/10.1111/j.1751-1097.1998.tb03247.x
  11. Park, H. R.; Oh, C. H.; Lee, H. C.; Lee, J. K.; Yang, K.; Bark, K.M. Photochem. Photobiol. 2002, 75, 237. https://doi.org/10.1562/0031-8655(2002)075<0237:SPOFAI>2.0.CO;2
  12. Liu, W.; Guo, R. Colloids Surf. A 2006, 274, 192. https://doi.org/10.1016/j.colsurfa.2005.09.009
  13. Guo, R.; Wei, P.; Liu, W. J. Pharmaceu. Biomed. Anal. 2007, 43,1580. https://doi.org/10.1016/j.jpba.2006.11.029
  14. Liu, W.; Guo, R. J. Coll. Inter. Sci. 2005, 290, 564. https://doi.org/10.1016/j.jcis.2005.04.061
  15. Liu, W.; Guo, R. J. Coll. Inter. Sci. 2006, 302, 625. https://doi.org/10.1016/j.jcis.2006.06.045
  16. Cornard, J. P.; Merlin, J. C.; Boudet, A. C.; Vrielynck, L. Biospectros.1997, 3, 183. https://doi.org/10.1002/(SICI)1520-6343(1997)3:3<183::AID-BSPY2>3.0.CO;2-7
  17. Russo, N.; Toscano, M.; Uccella, N. J. Agric. Food. Chem. 2000,48, 3232. https://doi.org/10.1021/jf990469h
  18. Baranac, J. M.; Petranovi, N. A.; Jasmina, M. M. D. J. Agric. Food Chem. 1997, 45, 1694. https://doi.org/10.1021/jf9606114
  19. Fletcher, P. D. I.; Howe, A. M.; Robinson, B. H. J. Chem. Soc. Faraday Trans. I 1987, 83, 985. https://doi.org/10.1039/f19878300985
  20. Grigolini, P.; Maestro, M. Chem. Phys. Lett. 1986, 127, 248. https://doi.org/10.1016/0009-2614(86)80267-6
  21. D’Aprano, A.; Lizzio, A.; Turco Liveri, V.; Aliotta, F.; Vasi, C.;Migliardo, P. J. Phys. Chem. 1988, 92, 4436. https://doi.org/10.1021/j100326a038
  22. Jain, T. K.; Varshney, M.; Maitra, A. J. Phys. Chem. 1989, 93,7409. https://doi.org/10.1021/j100358a032
  23. Riter, R. E.; Undiks, E. P.; Levinger, N. E. J. Am. Chem. Soc.1998, 120, 6062. https://doi.org/10.1021/ja980087c
  24. Riter, R. E.; Willard, D. M.; Levinger, N. E. J. Phys. Chem. 1998,102, 2705. https://doi.org/10.1021/jp973330n
  25. Park, H. R.; Lee, H. C.; Kim, T. H.; Lee, J. K.; Yang, K.; Bark, K.M. Photochem. Photobiol. 2000, 71, 281. https://doi.org/10.1562/0031-8655(2000)071<0281:SPOFAA>2.0.CO;2
  26. Fendler, J. H. Membrane Mimetic Chemistry: Characterization and Applications of Micelles. Microemulsions, Monolayers, Bilayers,Vesicles, Host-Guest Systems, and Polyions, Chapter 3; JohnWiley & Sons: New York, USA, 1982; p 652.
  27. Park, H. J.; Young, H. S.; Park, K. Y.; Rhee, S. H. Arch. Pharm.Res. 1991, 14, 167. https://doi.org/10.1007/BF02892023
  28. Jang, S. H.; Lee, S. G.; Kang, J. H.; Park, J. C.; Shin, S. C. KoreanJ. Med. Crop Sci. 2006, 14, 311.
  29. Politi, M. J.; Brandt, O.; Fendler, J. H. J. Phys. Chem. 1985, 89,2345. https://doi.org/10.1021/j100257a040
  30. Wong, M.; Thomas, J. K.; Nowak, T. J. Am. Chem. Soc. 1977, 99,4730. https://doi.org/10.1021/ja00456a034
  31. Paulo, P. M. R.; Laia, C. A. T.; Costa, S. M. B. J. Phys. Chem. B2003, 107, 1097. https://doi.org/10.1021/jp026954o
  32. Bark, K. M.; Force, R. K. Spectrochim. Acta 1993, 49A, 1605.
  33. Eaton, D. F. Reference Compounds for Fluorescence Measurement;IUPAC Organic Chem. Division: Wilmington, USA, 1987; p 1.
  34. Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 2463. https://doi.org/10.1021/j100685a009
  35. Zhang, J.; Bright, F. V. J. Phys. Chem. 1991, 95, 7900. https://doi.org/10.1021/j100173a064
  36. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.;Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.;Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.;Raghavachari, K.; Binkley, J. S.; Gonzalez, C. R. L.; Fox, D. J.;Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 03;Gaussian Inc: Pittsburgh, USA, 2003.
  37. Bark, K. M.; Forcé, R. K. J. Phys. Chem. 1989, 93, 7985. https://doi.org/10.1021/j100361a007
  38. Rossi, M.; Rickles, L. F.; Halpin, W. A. Bioorg. Chem. 1986, 14,55. https://doi.org/10.1016/0045-2068(86)90018-0
  39. Park, H. R.; Chung, K. Y.; Lee, H. C.; Lee, J. K.; Bark, K. M. Bull. Korean Chem. Soc. 2000, 21, 849.
  40. Martinez, M. L.; Studer, S. L.; Chou, P. T. J. Am. Chem. Soc.1991, 113, 5881. https://doi.org/10.1021/ja00015a063
  41. Bisht, P. B.; Petek, H.; Yoshihara, K.; Nagashima, U. J. Chem.Phys. 1995, 103, 5290. https://doi.org/10.1063/1.470565
  42. Nagaoka, S. I.; Nagashima, U. Chem. Phys. 1989, 136, 153. https://doi.org/10.1016/0301-0104(89)80043-6
  43. Nagaoka, S. I.; Shinde, Y.; Mukai, K.; Nagashima, U. J. Phys. Chem. A 1997, 101, 3061. https://doi.org/10.1021/jp962948e
  44. Sobolewski, A. L.; Domcke, W. Chem Phys. 1994, 184, 115. https://doi.org/10.1016/0301-0104(94)00091-3
  45. Herek, J. L.; Pedersen, S.; Bañares, L.; Zewail, A. H. J. Chem.Phys. 1992, 97, 9046. https://doi.org/10.1063/1.463331
  46. Barbara, P. F.; Walsh, P. K.; Brus, L. E. J. Phys. Chem. 1989, 93,29. https://doi.org/10.1021/j100338a011
  47. Catalán, J.; Díaz, C. J. Phys. Chem. A 1998, 102, 323. https://doi.org/10.1021/jp9732120
  48. Vener, M. V.; Scheiner, S. J. Phys. Chem. 1995, 99, 642. https://doi.org/10.1021/j100002a031
  49. Zhu, A.; Wang, B.; White, J. O.; Drickamer, H. G. J. Phys. Chem.B 2004, 108, 895. https://doi.org/10.1021/jp036312g
  50. Chou, P. T.; Martinez, M. L.; Cooper, W. C. J. Am. Chem. Soc.1992, 114, 4943. https://doi.org/10.1021/ja00038a091
  51. Liu, W.; Guo, R. J. Agric. Food Chem. 2005, 53, 2890. https://doi.org/10.1021/jf047847p
  52. Sarkar, M.; Ray, J. G.; Sengupta, P. K. Spectrochim. Acta part A1996, 52, 275. https://doi.org/10.1016/0584-8539(95)01622-8

Cited by

  1. Synthesis of Flavanol-4-ol and its Spectroscopic Properties in Aqueous Solution vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4092
  2. Spectroscopic Studies on the Oxidation of Catechin in Aqueous Solution vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3443
  3. Spectroscopic Properties of Quercetin in AOT Reverse Micelles vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.828
  4. O Mixed Solvents vol.91, pp.2, 2015, https://doi.org/10.1111/php.12407
  5. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones vol.121, pp.42, 2017, https://doi.org/10.1021/acs.jpca.7b07869
  6. Spectroscopic Study on the Anti-oxidant Properties of Flavonoid Galangin vol.15, pp.4, 2011, https://doi.org/10.20402/ajbc.2017.0146