DOI QR코드

DOI QR Code

Mechanism of DNA Cleavage Induced by Fe2+ Autoxidation

  • Received : 2010.12.23
  • Accepted : 2011.01.19
  • Published : 2011.03.20

Abstract

This work investigated the difference between $Fe^{2+}$ autoxidation-induced and Fenton-type cleavage of pBR322 plasmid DNA. $^{\cdot}OH$ generation reactions in the absence and presence of $H_2O_2$ under various conditions were also investigated. Although both the $Fe^{2+}$ autoxidation and Fenton-type reactions showed DNA cleavage and $^{\cdot}OH$ generation, there were significant differences in their efficiencies and reaction rates. The rate and efficiency of the cleavage reaction were higher in the absence of 1.0 mM of $H_2O_2$ than in its presence in 20 mM phosphate buffer. In contrast, the $^{\cdot}OH$ generation reaction was more prominent in the presence of $H_2O_2$ and showed a pH-independent, fast initial reaction rate, but the rate was decreased in the absence of $H_2O_2$ at across the entire tested pH range. Studies using radical scavengers on DNA cleavage and $^{\cdot}OH$ generation reactions in both the absence and presence of $H_2O_2$ confirmed that both reactions spontaneously involved the active oxygen species $^{\cdot}OH$, ${O_2}^{\cdot-}$, $^1O_2$ and $H_2O_2$, indicating that a similar process may participate in both reactions. Based on the above observations, a new mechanism for the $Fe^{2+}$ autoxidation-induced DNA cleavage reaction is proposed.

Keywords

References

  1. Ponka, P. Kidney Int. 1999, 55, S2. https://doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x
  2. Crichton, R. R.; Ward, R. J. Met. Ions Biol. Syst. 1998, 35, 633.
  3. Kruszewski, M. Mut. Res. 2003, 531, 81. https://doi.org/10.1016/j.mrfmmm.2003.08.004
  4. Kakhlon, O.; Cabantchik, Z. I. Free Rad. Biol. Med. 2002, 33,1037. https://doi.org/10.1016/S0891-5849(02)01006-7
  5. Mello-Filho, A. C.; Chubatsu, L. S.; Meneghini, R. Biochem. J.1988, 256, 475.
  6. Aruoma, O. I.; Halliwell, B.; Dizdaroglu, M. J. Biol. Chem. 1989,264, 13024.
  7. Lesko, S. A.; Lorentzen, R. J.; Ts'o, P. O. P. Biochemistry 1980,19, 3023. https://doi.org/10.1021/bi00554a029
  8. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640. https://doi.org/10.1126/science.2834821
  9. Beauchamp, C.; Fridovich, I. J. Biol. Chem. 1970, 245, 4641.
  10. McCord, J. M.; Day, E. D., Jr. FEBS Lett. 1978, 86, 139. https://doi.org/10.1016/0014-5793(78)80116-1
  11. Lloyd, D. R.; Phillips, D. H. Mut. Res. 1999, 424, 23. https://doi.org/10.1016/S0027-5107(99)00005-6
  12. Henle, E.; Han, Z.; Tang, N.; Rai, P.; Luo, Y.; Linn, S. J. Biol.Chem. 1999, 274, 962. https://doi.org/10.1074/jbc.274.2.962
  13. Pogozelski, W. K.; McNeese, T. J.; Tullius, T. D. J. Am. Chem. Soc.1995, 117, 6428. https://doi.org/10.1021/ja00129a002
  14. Floyd, R. A. Biochemical and Biophysical Research Communications1981, 99, 1209. https://doi.org/10.1016/0006-291X(81)90748-8
  15. Svoboda, P.; Harms-Ringdahl, M. Biochimica et Biophysica Acta(BBA) - General Subjects 2002, 1571, 45. https://doi.org/10.1016/S0304-4165(02)00205-2
  16. Gutteridge, J. M. C. Free Radical Biology and Medicine 1991, 11,401. https://doi.org/10.1016/0891-5849(91)90157-X
  17. Floyd, R. A. Archives of Biochemistry and Biophysics 1983, 225, 263. https://doi.org/10.1016/0003-9861(83)90029-2
  18. Gutteridge, J. M. Free Radic. Biol. Med. 1991, 11, 401. https://doi.org/10.1016/0891-5849(91)90157-X
  19. Minotti, G.; Aust, S. D. Free Radical Biology and Medicine 1987,3, 379. https://doi.org/10.1016/0891-5849(87)90016-5
  20. Qian, S. Y.; Buettner, G. R. Free Rad. Biol. Med. 1999, 26, 1447. https://doi.org/10.1016/S0891-5849(99)00002-7
  21. Urbañski, N. K.; Beresewicz, A. Acta Biochim. Pol. 2000, 47, 951.
  22. Koppenol, W. H.; Liebman, J. F. J. Phy. Chem. 1984, 88, 99. https://doi.org/10.1021/j150645a024
  23. Flemmig, J.; Arnhold, J. Eur. Biophys. J. 2007, 36, 377. https://doi.org/10.1007/s00249-006-0093-3
  24. Giulivi, C.; Hochstein, P.; Davies, K. J. A. Free Rad. Biol. Med.1994, 16, 123. https://doi.org/10.1016/0891-5849(94)90249-6
  25. Antunes, F.; Salvador, A.; Marinho, H. S.; Alves, R.; Pinto, R. E.Free Rad. Biol. Med. 1996, 21, 917. https://doi.org/10.1016/S0891-5849(96)00185-2
  26. Boveris, A.; Cadenas, E. Cellular Sources and Steady-state Levelsof Reactive Oxygen Species. In Oxygen, Gene Expression, andCellular Function; Clerch, L. B., Massaro, P. J., Eds.; New York:Marcel Dekker, Inc.: 1997; p 1.
  27. Cabelli, D. E.; Bielski, H. J. Use of Polyaminocarboxylates asMetal Chelators. In Methods in Enzymology; Packer, L., N., G. A.,Eds.; New York, Academic Press: 1990; p 116.
  28. Buettner, G. R.; Doherty, T. P.; Patterson, L. K. FEBS Lett. 1983,158, 143. https://doi.org/10.1016/0014-5793(83)80695-4
  29. Brestel, E. P. Biochem. Biophys. Res. Commun. 1985, 126, 482. https://doi.org/10.1016/0006-291X(85)90631-X
  30. Milligan, J. R.; Aguilera, J. A.; Ward, J. F. Radiat. Res. 1993, 133,151. https://doi.org/10.2307/3578350
  31. Tadolini, B.; Sechi, A. M. Free Radic. Res. Commun. 1987, 4, 161. https://doi.org/10.3109/10715768709088101
  32. Saran, M.; Michel, C.; Stettmaier, K.; Bors, W. Free Rad. Res. 2000,33, 567. https://doi.org/10.1080/10715760000301101
  33. Saran, M.; Summer, K. Free Radical Research 1999, 31, 429. https://doi.org/10.1080/10715769900300991
  34. Freinbichler, W.; Tipton, K. F.; Corte, L. D.; Linert, W. Journal ofInorganic Biochemistry 2009, 103, 28. https://doi.org/10.1016/j.jinorgbio.2008.08.014
  35. Kachur, A. V.; Manevich, Y.; Biaglow, J. E. Free Radical Research1997, 26, 399 https://doi.org/10.3109/10715769709084476
  36. Tadolini, B. Free Radic. Res. Commun. 1987, 4, 149. https://doi.org/10.3109/10715768709088100
  37. Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum:New York, 1988; p 5, first supplement.
  38. Rush, J. D.; Koppeno, W. M. FEBS Letters 1990, 275, 114. https://doi.org/10.1016/0014-5793(90)81452-T
  39. Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109. https://doi.org/10.1021/cr960421s
  40. Ravanat, J.-L.; Martinez, G. R.; Medeiros, M. H. G.; Di Mascio, P.;Cadet, J. Tetrahedron 2006, 62, 10709. https://doi.org/10.1016/j.tet.2006.08.097
  41. Ravanat, J.-L.; Martinez, G. R.; Medeiros, M. H. G.; Di Mascio, P.;Cadet, J. Archives of Biochemistry and Biophysics 2004, 423, 23. https://doi.org/10.1016/j.abb.2003.10.018
  42. Ravanat, J. L.; Di Mascio, P.; Martinez, G. R.; Medeiros, M. H.;Cadet, J. J. Biol. Chem. 2000, 275, 40601. https://doi.org/10.1074/jbc.M006681200
  43. Khan, A. U.; Kasha, M. Proceedings of the National Academy ofSciences of the United States of America 1994, 91, 12365. https://doi.org/10.1073/pnas.91.26.12365
  44. Ryter, S. W.; Tyrrell, R. M. Free Radic. Biol. Med. 1998, 24, 1520. https://doi.org/10.1016/S0891-5849(97)00461-9
  45. Song, B.; Wang, B.; Yuan, J. Talanta 2007, 72, 231. https://doi.org/10.1016/j.talanta.2006.10.021

Cited by

  1. Effect of pH on the Iron Autoxidation Induced DNA Cleavage vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1290
  2. Novel 1,3,4-thiadiazole–chalcone hybrids containing catechol moiety: synthesis, antioxidant activity, cytotoxicity and DNA interaction studies vol.9, pp.10, 2018, https://doi.org/10.1039/C8MD00316E