DOI QR코드

DOI QR Code

Temperature Dependence on Structural, Tribological, and Electrical Properties of Sputtered Conductive Carbon Thin Films

  • Park, Yong-Seob (Department of Electrical and Electronic Engineering, Seonam University) ;
  • Hong, Byung-You (School of information and communication Engineering, Sungkyunkwan University) ;
  • Cho, Sang-Jin (Department of Chemistry, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University)
  • Received : 2010.12.28
  • Accepted : 2011.01.13
  • Published : 2011.03.20

Abstract

Conductive carbon films were prepared at room temperature by unbalanced magnetron sputtering (UBMS) on silicon substrates using argon (Ar) gas, and the effects of post-annealing temperature on the structural, tribological, and electrical properties of carbon films were investigated. Films were annealed at temperatures ranging from $400^{\circ}C$ to $700^{\circ}C$ in increments of $100^{\circ}C$ using a rapid thermal annealing method by vacuum furnace in vacuum ambient. The increase of annealing temperature contributed to the increase of the ordering and formation of aromatic rings in the carbon film. Consequently, with increasing annealing temperature the tribological properties of sputtered carbon films are deteriorated while the resistivity of carbon films significantly decreased from $4.5{\times}10^{-3}$ to $1.0{\times}10^{-6}\;{\Omega}-cm$ and carrier concentration as well as mobility increased, respectively. This behavior can be explained by the increase of sp2 bonding fraction and ordering $sp^2$ clusters in the carbon networks caused by increasing annealing temperature.

Keywords

References

  1. Liu, D.; Benstetter, G.; Lodermeier, E.; Akula, I.; Dudarchyk, I.;Liu, Y.; Ma, T. Surf. Coat. Technol. 2003, 172, 194. https://doi.org/10.1016/S0257-8972(03)00338-4
  2. Peng, X. L.; Baber, Z. H.; Clyne, T. W. Surf. Coat. Technol. 2001,138, 23. https://doi.org/10.1016/S0257-8972(00)01139-7
  3. Sheeja, D.; Tay, B. K.; Lau, S. P.; Shi, X. Wear 2001, 249, 433. https://doi.org/10.1016/S0043-1648(01)00541-5
  4. Kulikorsky, V.; Bohc, P.; Franc, F.; Deineka, A.; Vorlicek, V.;Jastrabik, L. Diamond Relat. Mater. 2001, 10, 1076. https://doi.org/10.1016/S0925-9635(00)00525-2
  5. Li, H.; Xu, T.; Wang, C.; Chen, J.; Zhou, H.; Liu, H. Thin SolidFilms 2006, 515, 2153. https://doi.org/10.1016/j.tsf.2006.04.018
  6. Benlahsen, M.; Racine, B.; Clin, M.; Kellama, J. Non-CrystllineSolids 2000, 266-269, 783. https://doi.org/10.1016/S0022-3093(99)00815-7
  7. Takadoum, J.; Rauch, J. Y.; Cattenot, J. M.; Martin, N. Surf. Coat.Technol. 2003, 174, 427. https://doi.org/10.1016/S0257-8972(03)00542-5
  8. Piazza, F.; Golanski, A.; Schulze, S.; Relihan, G. Appl. Phys. Lett.2003, 82, 358. https://doi.org/10.1063/1.1538349
  9. Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095. https://doi.org/10.1103/PhysRevB.61.14095
  10. Wang, X. C.; Li, Z. Q.; Wu, P.; Jiang, E. Y.; Bai, H. L. Appl. Surf.Sci. 2006, 253, 2087. https://doi.org/10.1016/j.apsusc.2006.04.003
  11. Jung, H.-S.; Park, H.-H. Thin Solid Films 2000, 377, 320. https://doi.org/10.1016/S0040-6090(00)01363-8
  12. Onoprienko, A. A.; Artamonor, V. V.; Yanchuk, I. B. Surf. Coat.Technol. 2003, 172, 189. https://doi.org/10.1016/S0257-8972(03)00333-5
  13. Onoprienko, A. A.; Yanchuk, I. B. Powder Metallurgy and MetalCeramics 2006, 45, 190. https://doi.org/10.1007/s11106-006-0062-5
  14. Conway, N. M. J.; Ferari, A. C.; Flewitt, A. J.; Robertson, J.;Milne, W. I.; Tagliaferro, A.; Beyer, W. Diamond Relat. Mater.2006, 9, 765.
  15. Dillon, R. O.; Woolam, J. A. Physical Review B 1984, 29(6),3482. https://doi.org/10.1103/PhysRevB.29.3482
  16. Tang, Z.; Zhang, Z. J.; Narumi, K.; Xu, Y.; Naramoto, H.; Nagai,S. J. Appl. Phys. 2001, 89, 1956.

Cited by

  1. Effect of load on the friction-wear behavior of magnetron sputtered DLC film at high temperature vol.4, pp.1, 2011, https://doi.org/10.1088/2053-1591/aa54d6
  2. 비대칭 마그네트론 스퍼터로 증착된 비정질 탄소박막의 트라이볼로지 특성에서 CrC 삽입층 효과에 대한 연구 vol.31, pp.7, 2018, https://doi.org/10.4313/jkem.2018.31.7.475
  3. Design principles for efficient photoelectrodes in solar rechargeable redox flow cell applications vol.1, pp.1, 2020, https://doi.org/10.1038/s43246-020-0020-7