References
- Poterya, V.; Profant, V.; Farnik, M.; Sistik, L.; Slavicek, P.; Buck,U. J. Phys. Chem. A 2009, 113, 14583. https://doi.org/10.1021/jp904145q
- Carles, S.; Lecomte, F.; Schermann, J. P.; Desfrancois, C. J. Phys. Chem. A 2000, 104, 10662. https://doi.org/10.1021/jp002157j
- Choi, M. Y.; Miller, R. E. J. Phys. Chem. A 2006, 110, 9344. https://doi.org/10.1021/jp0624146
- Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 2009, 477, 276. https://doi.org/10.1016/j.cplett.2009.07.032
- Toennies, J. P.; Vilesov, A. F. Angew. Chem. Int. Ed. 2004, 43, 2622. https://doi.org/10.1002/anie.200300611
- Choi, M. Y.; Douberly, G. E.; Falconer, T. M.; Lewis, W. K.;Lindsay, C. M.; Merritt, J. M.; Stiles, P. L.; Miller, R. E. Int. Rev. Phys. Chem. 2006, 25, 15. https://doi.org/10.1080/01442350600625092
- Choi, M. Y.; Dong, F.; Miller, R. E. Phil. Trans. R. Soc. A 2005,363, 393. https://doi.org/10.1098/rsta.2004.1499
- Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc. 2006, 128, 7320. https://doi.org/10.1021/ja060741l
- Choi, M. Y.; Miller, R. E. J. Phys. Chem. A 2007, 111, 2475. https://doi.org/10.1021/jp0674625
- Choi, M. Y.; Dong, F.; Han, S. W.; Miller, R. E. J. Phys. Chem. A2008, 112, 7185. https://doi.org/10.1021/jp8012688
- Lee, S. J.; Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 2009, 475,24. https://doi.org/10.1016/j.cplett.2009.05.016
- Min, A.; Lee, S. J.; Choi, M. Y.; Miller, R. E. Bull. Korean Chem.Soc. 2009, 30, 3039. https://doi.org/10.5012/bkcs.2009.30.12.3039
- Nauta, K.; Miller, R. E. J. Chem. Phys. 1999, 111, 3426. https://doi.org/10.1063/1.479627
- Lewerenz, M.; Schilling, B.; Toennies, J. P. J. Chem. Phys. 1995,102, 8191. https://doi.org/10.1063/1.469231
- Franks, K. J.; Li, H. Z.; Kong, W. J. Chem. Phys. 1999, 110, 11779. https://doi.org/10.1063/1.479169
- Kong, W.; Bulthuis, J. J. Phys. Chem. A 2000, 104, 1055. https://doi.org/10.1021/jp993549x
- Douberly, G. E.; Miller, R. E. J. Phys. Chem. B 2003, 107, 4500. https://doi.org/10.1021/jp022360+
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.;Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi,J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H.P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul,A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D.J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong,M. W.; Gonzalez, C.; and Pople, J. A. Gaussian, Inc., WallingfordCT, 2004.
- Yan, S.; Bu, Y. J. Phys. Chem. B 2004, 108, 13874. https://doi.org/10.1021/jp047828i
- Torrent, M.; Musaev, D. G.; Morokuma, K.; Ke, S. C.; Warncke,K. J. Phys. Chem. B 1999, 103, 8618. https://doi.org/10.1021/jp991612c
- Flynn, S. D.; Skvortsov, D.; Morrison, A. M.; Liang, T.; Choi, M.Y.; Douberly, G. E.; Vilesov, A. F. J. Phys. Chem. Lett. 2010, 1,2233. https://doi.org/10.1021/jz100637m
- Nauta, K.; Miller, R. E. Science 1999, 283, 1895. https://doi.org/10.1126/science.283.5409.1895
- Van Bael, M. K.; Smets, J.; Schoone, K.; Houben, L.; McCarthy,W.; Adamowicz, L.; Nowak, M. J.; Maes, G. J. Phys. Chem. A1997, 101, 2397. https://doi.org/10.1021/jp963711l
Cited by
- Modeling the Histidine–Phenylalanine Interaction: The NH···π Hydrogen Bond of Imidazole·Benzene vol.119, pp.25, 2015, https://doi.org/10.1021/jp512766r
- Geometry of an Isolated Dimer of Imidazole Characterised by Rotational Spectroscopy and Ab Initio Calculations vol.17, pp.8, 2016, https://doi.org/10.1002/cphc.201501179
- N-Labeled 4-Methylimidazole as a Local Probe and Histidine Hydrogen-Bond Correlations vol.21, pp.7, 2015, https://doi.org/10.1002/chem.201404083
- Associating Imidazoles: Elucidating the Correlation between the Static Dielectric Permittivity and Proton Conductivity vol.120, pp.13, 2018, https://doi.org/10.1103/PhysRevLett.120.136001
- Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets vol.72, pp.2, 2018, https://doi.org/10.1140/epjd/e2017-80627-2
- vol.20, pp.45, 2018, https://doi.org/10.1039/C8CP04738C
- Imidazole Trimer-Water Complexes in Superfluid Helium Nanodroplets: Water Stretching Modes vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1407
- Synthesis, Self-assembly, and Catalytic Activity of 1H-Imidazole Amphiphiles vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2193
- Strained hydrogen bonding in imidazole trimer: a combined infrared, Raman, and theory study vol.21, pp.11, 2011, https://doi.org/10.1039/c9cp00399a
- Electric deflection of imidazole dimers and trimers in helium nanodroplets: Dipole moments, structure, and fragmentation vol.153, pp.8, 2020, https://doi.org/10.1063/5.0020844
- CO2 Methanation: Nickel-Alumina Catalyst Prepared by Solid-State Combustion vol.14, pp.22, 2011, https://doi.org/10.3390/ma14226789