DOI QR코드

DOI QR Code

Infrared Spectroscopy of Imidazole Trimer in Helium Nanodroplets: Free NH Stretch Mode

  • Lee, Seul-Ki (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Seung-Jun (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Ahn, Ah-Reum (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Yu-Sic (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Min, Ah-Reum (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Myong-Yong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Miller, Roger E. (Department of Chemistry, The University of North Carolina at Chapel Hill)
  • Received : 2010.01.04
  • Accepted : 2011.01.06
  • Published : 2011.03.20

Abstract

We report the first vibrational band assignment of imidazole trimer (IMT) solvated in helium nanodroplets. Several congested vibrational bands of imidazole (IM) clusters were obtained in the frequency region of $3513-3515\;cm^{-1}$ and vibrationally resolved due to the extremely low temperature (0.37 K) and very weak solutesolvent interaction environments of helium droplets. The unambiguous free NH band assignment was achieved with an aid of pick-up oven temperature dependence and vibrational transition moment angle (VTMA) experiments as well as density functional theory (DFT) calculations. The band at $3514.3\;cm^{-1}$ is attributed to the free NH stretching mode of linear IMT clusters, easily formed by the dipole-dipole interactions of IM in ultracold helium nanodroplets.

Keywords

References

  1. Poterya, V.; Profant, V.; Farnik, M.; Sistik, L.; Slavicek, P.; Buck,U. J. Phys. Chem. A 2009, 113, 14583. https://doi.org/10.1021/jp904145q
  2. Carles, S.; Lecomte, F.; Schermann, J. P.; Desfrancois, C. J. Phys. Chem. A 2000, 104, 10662. https://doi.org/10.1021/jp002157j
  3. Choi, M. Y.; Miller, R. E. J. Phys. Chem. A 2006, 110, 9344. https://doi.org/10.1021/jp0624146
  4. Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 2009, 477, 276. https://doi.org/10.1016/j.cplett.2009.07.032
  5. Toennies, J. P.; Vilesov, A. F. Angew. Chem. Int. Ed. 2004, 43, 2622. https://doi.org/10.1002/anie.200300611
  6. Choi, M. Y.; Douberly, G. E.; Falconer, T. M.; Lewis, W. K.;Lindsay, C. M.; Merritt, J. M.; Stiles, P. L.; Miller, R. E. Int. Rev. Phys. Chem. 2006, 25, 15. https://doi.org/10.1080/01442350600625092
  7. Choi, M. Y.; Dong, F.; Miller, R. E. Phil. Trans. R. Soc. A 2005,363, 393. https://doi.org/10.1098/rsta.2004.1499
  8. Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc. 2006, 128, 7320. https://doi.org/10.1021/ja060741l
  9. Choi, M. Y.; Miller, R. E. J. Phys. Chem. A 2007, 111, 2475. https://doi.org/10.1021/jp0674625
  10. Choi, M. Y.; Dong, F.; Han, S. W.; Miller, R. E. J. Phys. Chem. A2008, 112, 7185. https://doi.org/10.1021/jp8012688
  11. Lee, S. J.; Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 2009, 475,24. https://doi.org/10.1016/j.cplett.2009.05.016
  12. Min, A.; Lee, S. J.; Choi, M. Y.; Miller, R. E. Bull. Korean Chem.Soc. 2009, 30, 3039. https://doi.org/10.5012/bkcs.2009.30.12.3039
  13. Nauta, K.; Miller, R. E. J. Chem. Phys. 1999, 111, 3426. https://doi.org/10.1063/1.479627
  14. Lewerenz, M.; Schilling, B.; Toennies, J. P. J. Chem. Phys. 1995,102, 8191. https://doi.org/10.1063/1.469231
  15. Franks, K. J.; Li, H. Z.; Kong, W. J. Chem. Phys. 1999, 110, 11779. https://doi.org/10.1063/1.479169
  16. Kong, W.; Bulthuis, J. J. Phys. Chem. A 2000, 104, 1055. https://doi.org/10.1021/jp993549x
  17. Douberly, G. E.; Miller, R. E. J. Phys. Chem. B 2003, 107, 4500. https://doi.org/10.1021/jp022360+
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.;Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi,J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H.P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul,A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D.J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong,M. W.; Gonzalez, C.; and Pople, J. A. Gaussian, Inc., WallingfordCT, 2004.
  19. Yan, S.; Bu, Y. J. Phys. Chem. B 2004, 108, 13874. https://doi.org/10.1021/jp047828i
  20. Torrent, M.; Musaev, D. G.; Morokuma, K.; Ke, S. C.; Warncke,K. J. Phys. Chem. B 1999, 103, 8618. https://doi.org/10.1021/jp991612c
  21. Flynn, S. D.; Skvortsov, D.; Morrison, A. M.; Liang, T.; Choi, M.Y.; Douberly, G. E.; Vilesov, A. F. J. Phys. Chem. Lett. 2010, 1,2233. https://doi.org/10.1021/jz100637m
  22. Nauta, K.; Miller, R. E. Science 1999, 283, 1895. https://doi.org/10.1126/science.283.5409.1895
  23. Van Bael, M. K.; Smets, J.; Schoone, K.; Houben, L.; McCarthy,W.; Adamowicz, L.; Nowak, M. J.; Maes, G. J. Phys. Chem. A1997, 101, 2397. https://doi.org/10.1021/jp963711l

Cited by

  1. Modeling the Histidine–Phenylalanine Interaction: The NH···π Hydrogen Bond of Imidazole·Benzene vol.119, pp.25, 2015, https://doi.org/10.1021/jp512766r
  2. Geometry of an Isolated Dimer of Imidazole Characterised by Rotational Spectroscopy and Ab Initio Calculations vol.17, pp.8, 2016, https://doi.org/10.1002/cphc.201501179
  3. N-Labeled 4-Methylimidazole as a Local Probe and Histidine Hydrogen-Bond Correlations vol.21, pp.7, 2015, https://doi.org/10.1002/chem.201404083
  4. Associating Imidazoles: Elucidating the Correlation between the Static Dielectric Permittivity and Proton Conductivity vol.120, pp.13, 2018, https://doi.org/10.1103/PhysRevLett.120.136001
  5. Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets vol.72, pp.2, 2018, https://doi.org/10.1140/epjd/e2017-80627-2
  6. vol.20, pp.45, 2018, https://doi.org/10.1039/C8CP04738C
  7. Imidazole Trimer-Water Complexes in Superfluid Helium Nanodroplets: Water Stretching Modes vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1407
  8. Synthesis, Self-assembly, and Catalytic Activity of 1H-Imidazole Amphiphiles vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2193
  9. Strained hydrogen bonding in imidazole trimer: a combined infrared, Raman, and theory study vol.21, pp.11, 2011, https://doi.org/10.1039/c9cp00399a
  10. Electric deflection of imidazole dimers and trimers in helium nanodroplets: Dipole moments, structure, and fragmentation vol.153, pp.8, 2020, https://doi.org/10.1063/5.0020844
  11. CO2 Methanation: Nickel-Alumina Catalyst Prepared by Solid-State Combustion vol.14, pp.22, 2011, https://doi.org/10.3390/ma14226789