DOI QR코드

DOI QR Code

Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4

  • Park, Chang-Kyoo (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Park, Sung-Bin (Department of Materials Science and Engineering, Korea University) ;
  • Oh, Si-Hyung (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Jang, Ho (Department of Materials Science and Engineering, Korea University) ;
  • Cho, Won-Il (Advanced Battery Center, Korea Institute of Science and Technology)
  • Received : 2010.10.08
  • Accepted : 2010.12.29
  • Published : 2011.03.20

Abstract

This study examines the effects of a carbon coating on the electrochemical performances of $LiFePO_4$. The results show that the capacity of bare $LiFePO_4$ decreased sharply, whereas the $LiFePO_4$/C shows a well maintained initial capacity. The Li ion diffusivity of the bare and carbon coated $LiFePO_4$ is calculated using cyclic voltammetry (CV) to determine the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion. The diffusion constants for $LiFePO_4$ and $LiFePO_4$/C measured from CV are $6.56{\times}10^{-16}$ and $2.48{\times}10^{-15}\;cm^2\;s^{-1}$, respectively, indicating considerable increases in diffusivity after modifications. The Li ion diffusivity (DLi) values as a function of the lithium content in the cathode are estimated by electrochemical impedance spectroscopy (EIS). The effects of the carbon coating as well as the mechanisms for the improved electrochemical performances after modification are discussed based on the diffusivity data.

Keywords

References

  1. MacNeil, D. D.; Lu, Z.; Chen, Z.; Dahn, J. R. J. Power Sources 2002, 108, 8. https://doi.org/10.1016/S0378-7753(01)01013-8
  2. Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148, 283. https://doi.org/10.1016/S0167-2738(02)00064-4
  3. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609. https://doi.org/10.1149/1.1837649
  4. Takahashi, M.; Tobishima, S.; Takei, K.; Sakurai, Y. J. Power Sources 2001, 97/98, 508. https://doi.org/10.1016/S0378-7753(01)00728-5
  5. Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochem. Solid-State Lett. 2003, 6, A53. https://doi.org/10.1149/1.1544211
  6. Andersson, A. S.; Kalska, B.; Haggstrom, L. Thomas, J. O. Solid State Ionics 2000, 130, 41. https://doi.org/10.1016/S0167-2738(00)00311-8
  7. Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, 97-98, 503. https://doi.org/10.1016/S0378-7753(01)00727-3
  8. Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
  9. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem, Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
  10. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
  11. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
  12. Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 1.
  13. Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochem. Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
  14. Wang, G. X.; Bewlay, S.; Needham, S. A.; Liu, H. K.; Liu, H. K.; Drozd, V. A.; Lee, J. F.; Chen, J. M. J. Electrochem. Soc. 2006, 153, A25. https://doi.org/10.1149/1.2128766
  15. Franger, S.; Le Cras, F.; Bourbon C.; Rouault, H. Electrochem. Solid-State Lett. 2002, 5, A231. https://doi.org/10.1149/1.1506962
  16. Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45. https://doi.org/10.1016/S0167-2738(02)00134-0
  17. Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Electrochim. Acta 2009, 54, 4631. https://doi.org/10.1016/j.electacta.2009.03.007
  18. Shin, H. C.; Cho, W. I.; Jang, H. J. Power Sources 2006, 159, 1383. https://doi.org/10.1016/j.jpowsour.2005.12.043
  19. Shin, H. C.; Cho, W. I.; Jang, H. Electrochim. Acta 2006, 52, 1472. https://doi.org/10.1016/j.electacta.2006.01.078
  20. Guo, Z. P.; Liu, H.; Bewlay, S.; Liu, H. K.; Dou, S. X. J. New Mater. Electrochem. Syst. 2003, 6, 259.
  21. Lee, J.; Teja, A. S. Mater. Lett. 2006, 60, 2105. https://doi.org/10.1016/j.matlet.2005.12.083
  22. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; John Wiley & Sons Inc.: New York, 1980.
  23. Morgan, D.; Van der Ven, A.; Cedar, G. Electrochem. Solid-State Lett. 2004, 7, A30. https://doi.org/10.1149/1.1633511
  24. Ouyang, C.; Shi, S.; Wang, Z.; Huang, X.; Chen, L. Phys. Rev. B 2004, 69, 1.
  25. Yu, D. Y. W.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S. J. Electrochem. Soc. 2007, 154, A253. https://doi.org/10.1149/1.2434687
  26. Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, A1517. https://doi.org/10.1149/1.1785012
  27. Ho, C.; Raistrick, I. D.; Huggins, R. A. J. Electrochem. Soc. 1980, 127, 343. https://doi.org/10.1149/1.2129668
  28. Zhu, Y.; Wang, C. J. Phys. Chem. C 2010, 114, 2830. https://doi.org/10.1021/jp9113333

Cited by

  1. primary batteries using energy dispersive X-ray diffraction vol.16, pp.19, 2014, https://doi.org/10.1039/C4CP01220H
  2. Kinetic Study of High Voltage Spinel Cathode Material in a Wide Temperature Range for Lithium Ion Battery vol.164, pp.4, 2017, https://doi.org/10.1149/2.0771704jes
  3. Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace vol.47, pp.10, 2017, https://doi.org/10.1007/s10800-017-1111-0
  4. Olivine Phases as Cathode Materials for Li-Ion Rechargeable Batteries vol.160, pp.9, 2013, https://doi.org/10.1149/2.002310jes
  5. Synthesis, Characterization, and Electrochemical Behavior of LiMnxFe(1−x)PO4 Composites Obtained from Phenylphosphonate-Based Organic-Inorganic Hybrids vol.11, pp.1, 2018, https://doi.org/10.3390/ma11010056
  6. Hydrothermal synthesis of LiFePO4 micro-particles for fabrication of cathode materials based on LiFePO4/carbon nanotubes nanocomposites for Li-ion batteries vol.24, pp.11, 2018, https://doi.org/10.1007/s11581-018-2662-8
  7. Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries vol.3, pp.4, 2011, https://doi.org/10.5229/jecst.2012.3.4.172
  8. Electrochemical studies on Li+/K+ ion exchange behaviour in K4Fe(CN)6 cathode material for Li, K-ion battery vol.127, pp.1, 2011, https://doi.org/10.1007/s12039-014-0759-9
  9. Aqueous synthesis of LiFePO 4 with Fractal Granularity vol.6, pp.None, 2011, https://doi.org/10.1038/srep27024
  10. Facile Coating of Graphene Interlayer onto Li2S as a High Electrochemical Performance Cathode for Lithium Sulfur Battery vol.210, pp.None, 2011, https://doi.org/10.1016/j.electacta.2016.04.171
  11. Study of the lithium diffusion properties and high rate performance of TiNb 6 O 17 as an anode in lithium secondary battery vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-16711-9
  12. Effect of Niobium Doping on Electrochemical Properties of Microwave Synthesized Carbon Coated Nanolithium Iron Phosphate for High Rate Underwater Applications vol.16, pp.2, 2011, https://doi.org/10.1115/1.4041454
  13. Carbon‐Coated Supraballs of Randomly Packed LiFePO4 Nanoplates for High Rate and Stable Cycling of Li‐Ion Batteries vol.36, pp.7, 2011, https://doi.org/10.1002/ppsc.201900149
  14. Metal‐Organic Framework Derived Ge/TiO 2 @C Nanotablets as High‐Performance Anode for Lithium‐Ion Batteries vol.4, pp.35, 2011, https://doi.org/10.1002/slct.201902833
  15. Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques vol.694, pp.1, 2011, https://doi.org/10.1080/15421406.2020.1723899
  16. A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2 vol.24, pp.1, 2011, https://doi.org/10.1007/s10008-019-04419-x
  17. Cathode Chemistries and Electrode Parameters Affecting the Fast Charging Performance of Li-Ion Batteries vol.17, pp.2, 2020, https://doi.org/10.1115/1.4045567
  18. Characterization of Li Diffusion and Solid Electrolyte Interface for Li4Ti5O12 Electrode Cycled with an Organosilicon Additive Electrolyte vol.167, pp.11, 2011, https://doi.org/10.1149/1945-7111/aba5d3
  19. Efficient Direct Recycling of Lithium-Ion Battery Cathodes by Targeted Healing vol.4, pp.12, 2020, https://doi.org/10.1016/j.joule.2020.10.008
  20. Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High-Capacity Lithium-Ion Batteries vol.14, pp.5, 2011, https://doi.org/10.3390/ma14051071