References
- MacNeil, D. D.; Lu, Z.; Chen, Z.; Dahn, J. R. J. Power Sources 2002, 108, 8. https://doi.org/10.1016/S0378-7753(01)01013-8
- Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148, 283. https://doi.org/10.1016/S0167-2738(02)00064-4
- Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609. https://doi.org/10.1149/1.1837649
- Takahashi, M.; Tobishima, S.; Takei, K.; Sakurai, Y. J. Power Sources 2001, 97/98, 508. https://doi.org/10.1016/S0378-7753(01)00728-5
- Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochem. Solid-State Lett. 2003, 6, A53. https://doi.org/10.1149/1.1544211
- Andersson, A. S.; Kalska, B.; Haggstrom, L. Thomas, J. O. Solid State Ionics 2000, 130, 41. https://doi.org/10.1016/S0167-2738(00)00311-8
- Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, 97-98, 503. https://doi.org/10.1016/S0378-7753(01)00727-3
- Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
- Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem, Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
- Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
- Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
- Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 1.
- Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochem. Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
- Wang, G. X.; Bewlay, S.; Needham, S. A.; Liu, H. K.; Liu, H. K.; Drozd, V. A.; Lee, J. F.; Chen, J. M. J. Electrochem. Soc. 2006, 153, A25. https://doi.org/10.1149/1.2128766
- Franger, S.; Le Cras, F.; Bourbon C.; Rouault, H. Electrochem. Solid-State Lett. 2002, 5, A231. https://doi.org/10.1149/1.1506962
- Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45. https://doi.org/10.1016/S0167-2738(02)00134-0
- Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. Electrochim. Acta 2009, 54, 4631. https://doi.org/10.1016/j.electacta.2009.03.007
- Shin, H. C.; Cho, W. I.; Jang, H. J. Power Sources 2006, 159, 1383. https://doi.org/10.1016/j.jpowsour.2005.12.043
- Shin, H. C.; Cho, W. I.; Jang, H. Electrochim. Acta 2006, 52, 1472. https://doi.org/10.1016/j.electacta.2006.01.078
- Guo, Z. P.; Liu, H.; Bewlay, S.; Liu, H. K.; Dou, S. X. J. New Mater. Electrochem. Syst. 2003, 6, 259.
- Lee, J.; Teja, A. S. Mater. Lett. 2006, 60, 2105. https://doi.org/10.1016/j.matlet.2005.12.083
- Bard, A. J.; Faulkner, L. R. Electrochemical Methods; John Wiley & Sons Inc.: New York, 1980.
- Morgan, D.; Van der Ven, A.; Cedar, G. Electrochem. Solid-State Lett. 2004, 7, A30. https://doi.org/10.1149/1.1633511
- Ouyang, C.; Shi, S.; Wang, Z.; Huang, X.; Chen, L. Phys. Rev. B 2004, 69, 1.
- Yu, D. Y. W.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S. J. Electrochem. Soc. 2007, 154, A253. https://doi.org/10.1149/1.2434687
- Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, A1517. https://doi.org/10.1149/1.1785012
- Ho, C.; Raistrick, I. D.; Huggins, R. A. J. Electrochem. Soc. 1980, 127, 343. https://doi.org/10.1149/1.2129668
- Zhu, Y.; Wang, C. J. Phys. Chem. C 2010, 114, 2830. https://doi.org/10.1021/jp9113333
Cited by
- primary batteries using energy dispersive X-ray diffraction vol.16, pp.19, 2014, https://doi.org/10.1039/C4CP01220H
- Kinetic Study of High Voltage Spinel Cathode Material in a Wide Temperature Range for Lithium Ion Battery vol.164, pp.4, 2017, https://doi.org/10.1149/2.0771704jes
- Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace vol.47, pp.10, 2017, https://doi.org/10.1007/s10800-017-1111-0
- Olivine Phases as Cathode Materials for Li-Ion Rechargeable Batteries vol.160, pp.9, 2013, https://doi.org/10.1149/2.002310jes
- Synthesis, Characterization, and Electrochemical Behavior of LiMnxFe(1−x)PO4 Composites Obtained from Phenylphosphonate-Based Organic-Inorganic Hybrids vol.11, pp.1, 2018, https://doi.org/10.3390/ma11010056
- Hydrothermal synthesis of LiFePO4 micro-particles for fabrication of cathode materials based on LiFePO4/carbon nanotubes nanocomposites for Li-ion batteries vol.24, pp.11, 2018, https://doi.org/10.1007/s11581-018-2662-8
- Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries vol.3, pp.4, 2011, https://doi.org/10.5229/jecst.2012.3.4.172
- Electrochemical studies on Li+/K+ ion exchange behaviour in K4Fe(CN)6 cathode material for Li, K-ion battery vol.127, pp.1, 2011, https://doi.org/10.1007/s12039-014-0759-9
- Aqueous synthesis of LiFePO 4 with Fractal Granularity vol.6, pp.None, 2011, https://doi.org/10.1038/srep27024
- Facile Coating of Graphene Interlayer onto Li2S as a High Electrochemical Performance Cathode for Lithium Sulfur Battery vol.210, pp.None, 2011, https://doi.org/10.1016/j.electacta.2016.04.171
- Study of the lithium diffusion properties and high rate performance of TiNb 6 O 17 as an anode in lithium secondary battery vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-16711-9
- Effect of Niobium Doping on Electrochemical Properties of Microwave Synthesized Carbon Coated Nanolithium Iron Phosphate for High Rate Underwater Applications vol.16, pp.2, 2011, https://doi.org/10.1115/1.4041454
- Carbon‐Coated Supraballs of Randomly Packed LiFePO4 Nanoplates for High Rate and Stable Cycling of Li‐Ion Batteries vol.36, pp.7, 2011, https://doi.org/10.1002/ppsc.201900149
- Metal‐Organic Framework Derived Ge/TiO 2 @C Nanotablets as High‐Performance Anode for Lithium‐Ion Batteries vol.4, pp.35, 2011, https://doi.org/10.1002/slct.201902833
- Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques vol.694, pp.1, 2011, https://doi.org/10.1080/15421406.2020.1723899
- A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2 vol.24, pp.1, 2011, https://doi.org/10.1007/s10008-019-04419-x
- Cathode Chemistries and Electrode Parameters Affecting the Fast Charging Performance of Li-Ion Batteries vol.17, pp.2, 2020, https://doi.org/10.1115/1.4045567
- Characterization of Li Diffusion and Solid Electrolyte Interface for Li4Ti5O12 Electrode Cycled with an Organosilicon Additive Electrolyte vol.167, pp.11, 2011, https://doi.org/10.1149/1945-7111/aba5d3
- Efficient Direct Recycling of Lithium-Ion Battery Cathodes by Targeted Healing vol.4, pp.12, 2020, https://doi.org/10.1016/j.joule.2020.10.008
- Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High-Capacity Lithium-Ion Batteries vol.14, pp.5, 2011, https://doi.org/10.3390/ma14051071