DOI QR코드

DOI QR Code

Development of Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Sensitive Determination of Trace Copper in Water and Beverage Samples by Flame Atomic Absorption Spectrometry

  • Wu, Chunxia (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Zhao, Bin (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Li, Yingli (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Wu, Qiuhua (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Wang, Chun (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Wang, Zhi (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei)
  • Received : 2010.09.27
  • Accepted : 2010.12.26
  • Published : 2011.03.20

Abstract

A dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) has been developed as a new approach for the extraction of trace copper in water and beverage samples followed by the determination with flame atomic absorption spectrometry. In the DLLME-SFO, 8-hydroxy quinoline, 1-dodecanol, and methanol were used as chelating agent, extraction solvent and dispersive solvent, respectively. The experimental parameters related to the DLLME-SFO such as the type and volume of the extraction and dispersive solvent, extraction time, sample volume, the concentration of chelating agent and salt addition were investigated and optimized. Under the optimum conditions, the enrichment factor for copper was 122. The method was linear in the range from 0.5 to $300\;ng\;mL^{-1}$ of copper in the samples with a correlation coefficient (r) of 0.9996 and a limit of detection of $0.1\;ng\;mL^{-1}$. The method was applied to the determination of copper in water and beverage samples. The recoveries for the spiked water and beverage samples at the copper concentration levels of 5.0 and $10.0\;ng\;mL^{-1}$ were in the range between 92.0% and 108.0%. The relative standard deviations (RSD) varied from 3.0% to 5.6%.

Keywords

References

  1. Kazi, T. G.; Jalbani, N.; Kazi, N.; Jamali, M. K.; Arain, M. B.; Afridi, H. I.; Kandhro, A.; Pirzado, Z. Renal Fail. 2008, 30, 737. https://doi.org/10.1080/08860220802212999
  2. Parmeggiani, L. In Proceedings of the 3rd International Labor Organization; Geneva, 1983; 1, 574.
  3. Yaman, M. Curr. Med. Chem. 2006, 13, 2513. https://doi.org/10.2174/092986706778201620
  4. Panahi, H. A.; Karimi, M.; Moniri, E.; Soudi, H. Afr. J. Pure Appl. Chem 2008, 2, 96.
  5. Chen, X. W.; Huang, L. L.; He, R. H. Talanta 2009, 78, 71. https://doi.org/10.1016/j.talanta.2008.10.039
  6. Yamini, Y.; Rezaee, M.; Khanchi, A.; Faraji, M.; Saleh, A. J. Chromatogr. A 2010, 1217, 2358. https://doi.org/10.1016/j.chroma.2009.11.046
  7. Dadfarnia, S.; Salmanzadeh, A. M.; Shabani, A. M. H. Anal. Chim. Acta 2008, 623, 163. https://doi.org/10.1016/j.aca.2008.06.033
  8. Fathi, S. A. M.; Yaftian, M. R. J. Colloid Interface Sci. 2009, 334, 167. https://doi.org/10.1016/j.jcis.2009.02.071
  9. Es'haghi, Z.; Azmoodeh, R. Arabian J. Chem. 2010, 3, 21. https://doi.org/10.1016/j.arabjc.2009.12.004
  10. Fathi, S. A. M.; Yaftian, M. R. J. Hazard. Mater 2009, 164, 133. https://doi.org/10.1016/j.jhazmat.2008.07.138
  11. Diniz, M. C. T.; Filho, O. F.; Rohwedder, J. J. R. Anal. Chim. Acta 2004, 525, 281.
  12. Rezaei, B.; Sadeghi, E.; Meghdadi, S. J. Hazard. Mater 2009, 168, 787. https://doi.org/10.1016/j.jhazmat.2009.02.077
  13. Manzoori, J. L.; Bavili-Tabrizi, A. Microchem. J. 2002, 72, 1. https://doi.org/10.1016/S0026-265X(01)00113-8
  14. Shokrollahia, A.; Ghaedi, M.; Hossaini, O.; Khanjaria, N.; Soylak, M. J. Hazard. Mater. 2008, 160, 435. https://doi.org/10.1016/j.jhazmat.2008.03.016
  15. Divrikli, U.; Kartal, A. A.; Soylak, M.; Elci, L. J. Hazard. Mater. 2007, 145, 459. https://doi.org/10.1016/j.jhazmat.2006.11.040
  16. Kunio, O.; Masea, M.; Fumihiko, Y.; Isoshi, N.; Ryoei, I. Analyst 1990, 115, 23. https://doi.org/10.1039/an9901500023
  17. Lopez-Blanco, C.; Gomez-Alvarez, S.; Rey-Garrote, M.; Cancho-Grande, B.; Simal-Gandara, J. Anal. Bioanal. Chem. 2005, 383, 557. https://doi.org/10.1007/s00216-005-0038-1
  18. Zhang, J.; Lee, H. K. J. Chromatogr. A 2006, 1117, 31. https://doi.org/10.1016/j.chroma.2006.03.102
  19. Farajzadeh, M. A.; Bahram, M.; Zorita, S.; Mehr, B. G. J. Hazard. Mater. 2009, 161, 1535. https://doi.org/10.1016/j.jhazmat.2008.05.041
  20. Rezaee, M.; Assadi, Y.; Milani, H. M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. J. Chromatogr. A 2006, 1116, 1. https://doi.org/10.1016/j.chroma.2006.03.007
  21. Prosen, H.; Zupaneie-Kralj, Z. Trends Anal. Chem. 1999, 18, 272. https://doi.org/10.1016/S0165-9936(98)00109-5
  22. Ahmadi, F.; Assadi, Y.; Hosseini, S. M. R. M.; Rezaee, M. J. Chromatogr. A 2006, 1101, 307. https://doi.org/10.1016/j.chroma.2005.11.017
  23. Khalili, Z. M. R.; Yamini, Y.; Shariati, S.; Jonsson, J. A. Anal. Chim. Acta 2007, 585, 286. https://doi.org/10.1016/j.aca.2006.12.049
  24. Wang, Y. Y.; Zhao, G. Y.; Zang, X. H.; Wang, C.; Wang, Z. Chin. J. Anal. Chem. 2010, 38, 1517. https://doi.org/10.1016/S1872-2040(09)60073-6
  25. Sahin, C. A.; Tokgoz, I. Anal. Chim. Acta 2010, 667, 83. https://doi.org/10.1016/j.aca.2010.04.012
  26. Leong, M. I.; Huang, S. D. J. Chromatogr. A 2008, 1211, 8. https://doi.org/10.1016/j.chroma.2008.09.111
  27. Xu, H.; Ding, Z.; Lv, L.; Song, D.; Feng, Y. Q. Anal. Chim. Acta 2009, 636, 28. https://doi.org/10.1016/j.aca.2009.01.028
  28. Jian, Y. Y.; Hu, Y.; Wang, T.; Liu, J. L.; Zhang, C.; Li, Y. Chin. J. Anal. Chem. 2010, 38, 62. https://doi.org/10.1016/S1872-2040(09)60016-5
  29. Farajzadeh, M. A.; Bahram, M.; Mehr, B. G.; Jonsson, J. A. Talanta 2008, 75, 832. https://doi.org/10.1016/j.talanta.2007.12.035
  30. Ghaedi, M.; Niknam, K.; Taheri, K.; Hossainian, H.; Soylak, M. Food Chem. Toxicol 2010, 48, 891. https://doi.org/10.1016/j.fct.2009.12.029
  31. Mohammadi, S. Z.; Afzali, D.; Baghelani, Y. M. Anal. Chim. Acta 2009, 653, 173. https://doi.org/10.1016/j.aca.2009.09.010

Cited by

  1. Separation and Preconcentration by Dispersive Liquid–Liquid Microextraction Procedure: Recent Applications vol.74, pp.9-10, 2011, https://doi.org/10.1007/s10337-011-2124-1
  2. Methyl benzoate as a non-halogenated extraction solvent for dispersive liquid–liquid microextraction: Application to the preconcentration of copper(ii) with 1-nitroso-2-naphthol vol.4, pp.12, 2012, https://doi.org/10.1039/c2ay25823d
  3. The present state of coupling of dispersive liquid–liquid microextraction with atomic absorption spectrometry vol.28, pp.1, 2013, https://doi.org/10.1039/C2JA30175J
  4. Five Years of Dispersive Liquid–Liquid Microextraction vol.48, pp.3, 2013, https://doi.org/10.1080/05704928.2012.697087
  5. Dispersive liquid–liquid microextraction in food analysis. A critical review vol.406, pp.8, 2014, https://doi.org/10.1007/s00216-013-7344-9
  6. Ten years of dispersive liquid–liquid microextraction and derived techniques vol.52, pp.4, 2017, https://doi.org/10.1080/05704928.2016.1224240
  7. Recent advances in applications of single-drop microextraction: A review vol.706, pp.1, 2011, https://doi.org/10.1016/j.aca.2011.08.022
  8. Determination of Indole-3-acetic Acid and Abscisic Acid by Double-Direction Dispersive Liquid–Liquid Microextraction Coupled with High-Performance Liquid Chromatography vol.48, pp.4, 2015, https://doi.org/10.1080/00032719.2014.956214
  9. Ionic liquid based dispersive liquid-liquid microextraction procedure for the spectrophotometric determination of copper using 3-dimethylamino rhodanine as a chelating agent in natural waters vol.3, pp.4, 2011, https://doi.org/10.1016/j.kijoms.2017.09.002