DOI QR코드

DOI QR Code

Formation of a Unique 1:2 Calcium-Calixquinone Complex in Aqueous Media

  • Received : 2010.12.03
  • Accepted : 2010.12.26
  • Published : 2011.03.20

Abstract

We report the complexation behavior of calix[4]arenemonoquinone-triacid (CTAQ), which is an electroactive and water-soluble receptor for calcium ion. UV-visible and NMR spectroscopic studies revealed that CTAQ in aqueous media forms 1:2 as well as 1:1 (metal ion:CTAQ) stoichiometric complexes with $Ca^{2+}$, $Sr^{2+}$, and $Ba^{2+}$ ions. The nonlinear fitting of titration curves based on UV-visible absorption spectra showed that the binding constants of CTAQ for $Ca^{2+}$ ion are 4 $({\pm}2){\times}10^6\;M^{-1}$ for 1:1 and 1.4 $({\pm}0.5){\times}10^{11}\;M^{-2}$ for 1:2 complex. NMR conformational studies and the titration curves corroborate that the $Ca^{2+}$:CTAQ complex in aqueous solution is not present in the form of merely 1:1 one, being consistent with UV-visible spectrophotometric results. The Monte Carlo simulation supports the presence of a stable conformer of 1:2 complexes in which a $Ca^{2+}$ ion is interposed between two CTAQs at the global minimum. This is the first model of 1:2 stoichiometric complex of calix[4]arene and alkaline earth ions in aqueous media.

Keywords

References

  1. Gutsche, C. D. Calixarene. Monographs in Supramolecular Chemistry; Stoddard, J. F., Ed.; Royal Society of Chemistry: 1989.
  2. Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713. https://doi.org/10.1021/cr960385x
  3. Danil de Namor, A. F.; Cleverley, R. M.; Zapata-Ormachea, M. L. Chem. Rev. 1998, 98, 2495. https://doi.org/10.1021/cr970095w
  4. Beer, P. D.; Hayes, E. J. Coord. Chem. Rev. 2003, 240, 167. https://doi.org/10.1016/S0010-8545(02)00303-X
  5. Creaven, B. S.; Donlon, D. F.; McGinley, J. Coord. Chem. Rev.2009, 253, 893. https://doi.org/10.1016/j.ccr.2008.06.008
  6. Danil de Namor, A. F.; Chahine, S.; Kowalska, D.; Castellano, E. E.; Piro, O. E. J. Am. Chem. Soc. 2002, 124, 12824. https://doi.org/10.1021/ja020764+
  7. Danil de Namor, A. F.; Jafou, O. J. Phys. Chem. B 2001, 105, 8018. https://doi.org/10.1021/jp011124g
  8. Danil de Namor, A. F.; Chahine, S.; Castellano, E. E.; Piro, O. E. J. Phys. Chem. B 2004, 108, 11384. https://doi.org/10.1021/jp040069j
  9. Danil de Namor, A. F.; Chahine, S. J. Phys. Chem. B 2005, 109, 18096. https://doi.org/10.1021/jp053134d
  10. Varnek, A.; Wipff, G. J. Phys. Chem. 1993, 97, 10840. https://doi.org/10.1021/j100143a052
  11. Biros, S. M.; Rebek, J. Jr. Chem. Soc. Rev. 2007, 36, 93. https://doi.org/10.1039/b508530f
  12. Ghoufi, A.; Pison, L.; Morel, J. P.; Morel-Desrosiers, N.; Bonal, C.; Malfreyt, P. J. Phys. Chem. B 2007, 111, 11478. https://doi.org/10.1021/jp0721245
  13. Steemers, F. J.; Meuris, H. G.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E. B.; Verhoeven, J. W. J. Org. Chem. 1997, 62, 4229. https://doi.org/10.1021/jo970132j
  14. Werner, T.; Kürner, J. M.; Krause, C.; Wolfbeis, O. S. Anal. Chim. Acta 2000, 421, 199. https://doi.org/10.1016/S0003-2670(00)01049-7
  15. Liu, Y.; Wang, H.; Wang, L.-U.; Zhang, H.-Y. Thermochim. Acta 2004, 414, 65. https://doi.org/10.1016/j.tca.2003.11.015
  16. Bakirci, H.; Koner, A. L.; Nau, W. M. Chem. Commun. 2005, 5411.
  17. Kunsagi-Mate, S.; Nagy, L.; Nagy, G.; Bitter, I.; Kollar, L. J. Phys. Chem. B 2003, 107, 4727. https://doi.org/10.1021/jp027051y
  18. Hirning, L. D.; Fox, A. P.; McCleskey, E. W.; Olivera, B. M.; Thayer, S. A.; Miller, R. J.; Tsien, R. W. Science 1988, 268, 239.
  19. Kim, Y. H.; Cha, N. R.; Chang, S. K. Tetrahedron Lett. 2002, 43, 3883. https://doi.org/10.1016/S0040-4039(02)00658-5
  20. Ogata, M.; Fujimoto, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 4505. https://doi.org/10.1021/ja00089a061
  21. Kubo, Y.; Tokita, S.; Kojima, Y.; Osano, Y. T.; Matsuzaki, T. J. Org. Chem. 1996, 61, 3758. https://doi.org/10.1021/jo951907w
  22. Tsien, R. Y. Biochemistry 1980, 19, 2396. https://doi.org/10.1021/bi00552a018
  23. Rigby, A. C.; Baleja, J. D.; Li, L.; Pedersen, L. G.; Furie, B. C.; Furie, B. Biochemistry 1997, 36, 15677. https://doi.org/10.1021/bi9718550
  24. Onoda, A.; Yamada, Y.; Nakayama, Y.; Takahashi, K.; Adachi, H.; Okamura, T-a.; Nakamura, A.; Yamamoto, H.; Ueyama, N.; Vyprachticky, D.; Okamoto, Y. Inorg. Chem. 2004, 43, 4447. https://doi.org/10.1021/ic035075t
  25. Dudev, T.; Lim, C. J. Phys. Chem. B 2004, 108, 4546. https://doi.org/10.1021/jp0310347
  26. Rasmussen, H.; Barrett, P. Q. Physiol. Rev. 1984, 64, 938.
  27. Heinemann, S. H.; Terlau, H.; Stiihmer, W.; Imoto, K.; Numa, S. Nature 1992, 356, 441. https://doi.org/10.1038/356441a0
  28. Nonner, W.; Gillespie, D.; Henderson, D.; Eisenberg, B. J. Phys. Chem. B 2001, 105, 6427. https://doi.org/10.1021/jp010562k
  29. Chung, T. D.; Kang, S. K.; Kim, H.; Kim, J. R.; Oh, W. S.; Chang, S. K. Chem. Lett. 1998, 1225.
  30. Kang, S. K.; Chung, T. D.; Kim, H. Electrochim. Acta 2000, 45, 2939. https://doi.org/10.1016/S0013-4686(00)00372-8
  31. Kang, S. K.; Lee, O. S.; Chang, S. K.; Chung, D. S.; Kim, H.; Chung, T. D. J. Phys. Chem. C 2009, 113, 19981. https://doi.org/10.1021/jp9067262
  32. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. https://doi.org/10.1002/jcc.540110405
  33. Qui, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C. J. Phys. Chem. A 1997, 101, 3005. https://doi.org/10.1021/jp961992r
  34. Boccio, M.; Sayago, A.; Asuero, A. G. Int. J. Pharm. 2004, 284, 61. https://doi.org/10.1016/j.ijpharm.2004.07.014
  35. Vives, M.; Gargallo, R.; Tauler, R. Anal. Chim. Acta 2000, 424, 105. https://doi.org/10.1016/S0003-2670(00)01029-1
  36. Wang, Z-X.; Jiang, R-F. FEBS Lett. 1996, 392, 245. https://doi.org/10.1016/0014-5793(96)00818-6
  37. Ishikawa, S.; Neya, S.; Funasaki, N. J. Phys. Chem. B 1998, 102, 2502. https://doi.org/10.1021/jp9729066
  38. Kubo, Y.; Tokita, S.; Kojima, Y.; Osano, Y. T.; Matsuzaki, T. J. Org. Chem. 1996, 61, 3758. https://doi.org/10.1021/jo951907w
  39. Afkhami, A.; Khajavi, F.; Khanmohammadi, H. J. Chem. Eng. Data 2009, 54, 866. https://doi.org/10.1021/je800663v
  40. Kang, S. K.; Kim, H.; Kim, J. Curr. Appl. Phys. 2009, 9, e256. https://doi.org/10.1016/j.cap.2009.06.046
  41. Beer, P. D.; Gale, P. A.; Chen, Z.; Drew, M. G. B.; Heath, J. A.; Ogden, M. I.; Powell, H. R. Inorg. Chem. 1997, 36, 5880. https://doi.org/10.1021/ic9704851
  42. Liu, Y.; Han, B. H.; Zhang, H. Y. Curr. Org. Chem. 2004, 8, 35. https://doi.org/10.2174/1385272043486061
  43. Ramstad, T.; Hadden, C. E.; Martin, G. E.; Speaker, S. M.; Teagarden, D. L.; Thamann, T. J. Int. J. Pharm. 2005, 296, 55. https://doi.org/10.1016/j.ijpharm.2005.02.018
  44. Dweck, D.; Reyes-Alfonso, A.; Potter, J. D., Jr. Anal. Biochem. 2005, 347, 303. https://doi.org/10.1016/j.ab.2005.09.025
  45. Souaya, E. R.; Hanna, W. G.; Ismail, E. H.; Milad, N. E. J. Coord. Chem. 2004, 57, 825. https://doi.org/10.1080/00958970410001689094
  46. Kang, J.-G.; Kang, H.-J.; Jung, J.-S.; Yun, S. S.; Kim, C.-H. Bull. Korean Chem. Soc. 2004, 25, 852. https://doi.org/10.5012/bkcs.2004.25.6.852
  47. Israeli, Y.; Detellier, C. J. Phys. Chem. B 1997, 101, 1897. https://doi.org/10.1021/jp962538q

Cited by

  1. Ion Captured by Calix[4]quinone in Water vol.135, pp.50, 2013, https://doi.org/10.1021/ja410406e