DOI QR코드

DOI QR Code

Brønsted Acidic Ionic Liquids as Efficient Catalysts for Clean Synthesis of Carbamatoalkyl Naphthols

  • Tavakoli-Hoseini, Niloofar (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University) ;
  • Heravi, Majid M. (Department of Chemistry, School of Sciences, Alzahra University) ;
  • Bamoharram, Fatemeh F. (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University) ;
  • Davoodnia, Abolghasem (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University)
  • Received : 2010.10.30
  • Accepted : 2010.12.23
  • Published : 2011.03.20

Abstract

Under mild conditions and without any additional organic solvent, synthesis of carbamatoalkyl naphthols could be carried out in the present of two halogen-free Br${\phi}$nsted acidic ionic liquids, 3-methyl-1-(4-sulfonic acid)butylimidazolium hydrogen sulfate and N-(4-sulfonic acid)butylpyridinium hydrogen sulfate. A wide range of aromatic aldehydes easily undergo condensation with $\beta$-naphthol and methyl or benzyl carbamate to afford the desired products of good purity in excellent yields. The present methodology offers several advantages such as a simple procedure with an easy work-up, short reaction times, and excellent yields. The catalysts could be recycled and reused for several times without substantial reduction in their catalytic activities.

Keywords

References

  1. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: 1998; Oxford.
  2. Poliakoff, M.; Fitzpatric, M. J.; Farren T. R.; Anastas, P. T. Science 2002, 297, 807.
  3. Horvath, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2167. https://doi.org/10.1021/cr0783784
  4. Wang, C.; Guan, W.; Xie, P.; Yun, X.; Li, H.; Hua, X.; Wang, Y. Catal. Commun. 2009, 10, 725. https://doi.org/10.1016/j.catcom.2008.11.027
  5. Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weave, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 5962.
  6. Gui, J.; Cong, X.; Liu, D.; Zhang, X.; Hu, Z.; Sun, Z. Catal. Commun. 2004, 5, 473. https://doi.org/10.1016/j.catcom.2004.06.004
  7. Gui, J.; Ban, H.; Cong, X.; Zhang, X.; Hu Z.; Sun, Z. J. Mol. Catal. A: Chemical. 2005, 225, 27. https://doi.org/10.1016/j.molcata.2004.08.026
  8. Wasserscheid, P.; Sesing, M.; Korth, W. Green Chem. 2002, 4, 134. https://doi.org/10.1039/b109845b
  9. Valkenberg, M. H.; DeCastro, C.; Holderich, W. F. Green Chem. 2002, 4, 88. https://doi.org/10.1039/b107946h
  10. Qiao, K.; Yokoyama, C. Chem. Lett. 2004, 33, 472. https://doi.org/10.1246/cl.2004.472
  11. Dubreuil, J. F.; Bozureau, J. P. 2000, 41, 7351. https://doi.org/10.1016/S0040-4039(00)01237-5
  12. Strubing, D.; Neumann, H.; Klaus, S.; Hubner, S.; Beller, M. Tetrahedron 2005, 61, 11333. https://doi.org/10.1016/j.tet.2005.09.097
  13. Heydari, A.; Arefi, A.; Khaksar, S.; Shiroodi, R. K. J. Mol. Catal. A: Chem. 2007, 271, 142. https://doi.org/10.1016/j.molcata.2007.02.046
  14. Yu, L.; Chen, B.; Huang, X. Tetrahedron Lett. 2007, 48, 925. https://doi.org/10.1016/j.tetlet.2006.12.026
  15. Shaterian, H. R.; Hosseinian, A.; Ghashang, M. Tetrahedron Lett. 2008, 49, 5804. https://doi.org/10.1016/j.tetlet.2008.07.126
  16. Dabiri, M.; Delbari, A. S.; Bazgir, A. Heterocycles 2007, 71, 543. https://doi.org/10.3987/COM-06-10946
  17. Dingermann, T.; Steinhilber, D.; Folkers, G. In Molecular Biology in Medicinal Chemistry; Wiley-VCH: 2004.
  18. Shen, A. Y.; Tsai, C. T.; Chen, C. L. Eur. J. Med. Chem. 1999, 34, 877. https://doi.org/10.1016/S0223-5234(99)00204-4
  19. Enders, D.; Muller, S. F.; Raabe, G. Angew. Chem. Int. Ed. 1999, 38, 195. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<195::AID-ANIE195>3.0.CO;2-6
  20. Evans, D. A.; Wu, L. D.; Wiener, J. M.; Johnson, J. S.; Ripin, D. H. B.; Tedrow, J. S. J. Org. Chem. 1999, 64, 6411. https://doi.org/10.1021/jo990756k
  21. Kochi, T.; Tang; T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518-6519. https://doi.org/10.1021/ja026292g
  22. Murai, T.; Sano, H.; Kawai, H.; Aso, H.; Shibahara, F. J. Org. Chem. 2005, 70, 8148. https://doi.org/10.1021/jo051378o
  23. Heravi, M. M.; Tavakoli-Hoseini, N.; Bamoharram, F. F. Green Chem. Lett. and Reviews in Press.
  24. Wang, W.; Shao, L.; Cheng, W.; Yang, J.; He, M. Catal. Commun. 2008, 9, 337. https://doi.org/10.1016/j.catcom.2007.07.006
  25. Gui, J.; Cong, X.; Liu, D.; Zhang, X.; Hu, Zh.; Sun, Zh. Catal. Commun. 2004, 5, 473. https://doi.org/10.1016/j.catcom.2004.06.004
  26. Yang, Q.; Wei, Z.; Xing, H.; Ren, Q. Catal. Commun. 2008, 9, 1307. https://doi.org/10.1016/j.catcom.2007.11.023
  27. Thi, L. T. B.; Korth, W.; Aschauer, S.; Jess, A. Green Chem. 2009, 11, 1961. https://doi.org/10.1039/b913872b
  28. Davoodnia, A.; Heravi, M. M.; Rezaei- Daghigh, L.; Tavakoli-Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
  29. Bernot, R. J.; Brueseke, M. A.; Evans-White, M. A.; Lamberti, G. A. Environ. Toxicol. Chem. 2005, 24, 87. https://doi.org/10.1897/03-635.1
  30. McCamley, K.; Warner, N. A.; Lamoureux, M. M.; Scammells, P. J.; Singer, R. D. Green Chem. 2004, 6, 341. https://doi.org/10.1039/b408002e
  31. Hajipour, A. R.; Khazdooz, L.; Ruoho, A. E. Catal. Commun. 2008, 9, 89. https://doi.org/10.1016/j.catcom.2007.05.003
  32. Zhao, D. B.; Wu, M.; Kou, Y.; Min, E. Z. Catal. Today 2002, 74, 157. https://doi.org/10.1016/S0920-5861(01)00541-7
  33. Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Beheshtiha, Y. S.; Davoodnia, A. Synth. Commun. 2010, 40, 523. https://doi.org/10.1080/00397910902994194
  34. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  35. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N.Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
  36. Kumar, R.; Nandi, G. C.; Verma, R. K.; Singh, M. S. Tetrahedron Lett. 2010, 51, 442. https://doi.org/10.1016/j.tetlet.2009.11.064
  37. Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Mahdavi, M. Synth. Commun. 2009, 39, 4328. https://doi.org/10.1080/00397910902792630
  38. Nagarapu, L.; Baseeruddin, M.; Vijaya Kumari, N.; Kantevari, S.; Rudradas, A. P. Synth. Commun. 2007, 37, 2519. https://doi.org/10.1080/00397910701462658

Cited by

  1. ChemInform Abstract: Broensted Acidic Ionic Liquids as Efficient Catalysts for Clean Synthesis of Carbamatoalkyl Naphthols. vol.42, pp.28, 2011, https://doi.org/10.1002/chin.201128086
  2. Multicomponent reactions in unconventional solvents: state of the art vol.14, pp.8, 2012, https://doi.org/10.1039/c2gc35635j
  3. Solvent-free one-pot synthesis of 1-carbamatoalkyl-2-naphthols by a tin tetrachloride catalyzed multicomponent reaction vol.144, pp.7, 2013, https://doi.org/10.1007/s00706-013-0927-5
  4. Efficient one-pot synthesis of 1-carbamatoalkyl-2-naphthols using aluminum methanesulfonate as a reusable catalyst vol.39, pp.5, 2013, https://doi.org/10.1007/s11164-012-0744-1
  5. Preparation of methyl/benzyl(2-hydroxynaphthalen-1-yl)(aryl)methylcarbamate derivatives using magnesium hydrogen sulfate vol.40, pp.4, 2014, https://doi.org/10.1007/s11164-013-1044-0
  6. Efficient synthesis of 1-carbamatoalkyl-2-naphthols using Brønsted acidic ionic liquid as reusable catalyst vol.40, pp.8, 2014, https://doi.org/10.1007/s11164-013-1147-7
  7. -Cbz Protected α-Branched Amines vol.80, pp.1, 2015, https://doi.org/10.1021/jo502540k
  8. Design and characterization of nano-silica-bonded 3-n-propyl-1-sulfonic acid imidazolium chloride {nano-SB-[PSIM]Cl} as a novel, heterogeneous and reusable catalyst for the condensation of arylaldehydes with β-naphthol and alkyl carbamates vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2154-7
  9. Evaluation of catalytic activity of two newly prepared functionalized sulfonic acids ionic liquids in the synthesis of carbamatoalkyl naphthols under mild conditions vol.87, pp.2, 2017, https://doi.org/10.1134/S1070363217020268
  10. Fabrication, identification and application of Fe3O4 bonded nicotinic acid-sulfonic acid chloride as a retrievable magnetic nanostructured catalyst for the one-pot synthesis of 1-carbamato-alkyl-2-naphthols vol.44, pp.10, 2018, https://doi.org/10.1007/s11164-018-3462-5
  11. An unexpected tetracyclic product isolated during the synthesis of biscoumarins catalyzed by [MIM(CH2)4SO3H][HSO4]: Characterization and X-ray crystal vol.163, pp.3, 2011, https://doi.org/10.1016/j.molliq.2011.08.007
  12. Preparation of Methyl (2-hydroxynaphthalen-1-yl)(aryl)methyl/benzylcarbamate derivatives using magnesium (II) 2,2,2-trifluoroacetate as an efficient catalyst vol.35, pp.11, 2011, https://doi.org/10.3184/174751911x13182405888457
  13. Synthesis of 1-carbamatoalkyl-2-naphthols in Tween® 20 Aqueous Micelles vol.37, pp.5, 2013, https://doi.org/10.3184/174751913x13647554585207
  14. Efficient preparation of some new 1-carbamato-alkyl-2-naphthols using N-halo reagents in neutral media vol.4, pp.3, 2011, https://doi.org/10.1039/c3ra45036h
  15. Synthesis of Naphthoxazinones in a One-Pot Two-Step Manner by the Application of Propylphosphonic Anhydride (T3P®) vol.2, pp.2, 2011, https://doi.org/10.3390/chemistry2020037