DOI QR코드

DOI QR Code

Versatilities of Calix[4]pyrrole Based Anion Receptors

  • Lee, Chang-Hee (Department of Chemistry and Institute of Molecular Science & Fusion Technology, Kangwon National University)
  • Received : 2010.12.31
  • Accepted : 2011.01.24
  • Published : 2011.03.20

Abstract

Calixpyrroles and related macrocycles are non-planer synthetic anion receptors that have attracted considerable attentions in recent years. Although the synthesis of calix[4]pyrrole (known as meso-octamethylporphyrinogen) was reported more than 100 years ago, the anion binding properties were first discovered in 1996. The simple calix[4]pyrroles can be synthesized in single step in high yield by condensation of pyrrole with acetone. The compounds showed preferential binding for halide anions including fluoride, phosphate, carboxylate, and chloride in organic media. Efforts to improve the anion affinity of calix[4]pyrrole and to enhance its selectivity have led to the synthesis of a variety of new calixpyrrole derivatives. Among the various modifications, introduction of straps on one side of the calix[4]pyrroles are the most effective. Incorporation of aromatic rings other than pyrroles also exhibited interesting binding behaviour. Introduction of signalling units as part of the strapping element enable to detect the anions on chromogenic or fluorogenic fashion. Finding of the anion transport properties across the membrane and cytotoxic effects of the calix[4]pyrroles open new window for calixpyrrole-related research. The polymer-incorporated systems have also been employed as anion complexants in solvent-solvent extraction. These old, yet easy-to-make macrocycles have well advanced more recently with the discovery of the ion-pair complexation properties. In this review, the synthetic developments and anion binding properties of calixpyrroles for the last decades will be discussed and will cover the advances in calixpyrrole chemistry.

Keywords

References

  1. Baeyer, A. Ber. Dtsch. Chem. Ges. 1886, 19, 2184-2185.
  2. Dennstedt, M.; Zimmerman, J. Ber. Dtsch. Chem. Ges. 1886, 19, 2189-2194.
  3. Dennstedt, M.; Zimmermann, J. Ber. Dtsch. Chem. Ges. 1887, 20, 850-857. https://doi.org/10.1002/cber.188702001192
  4. Dennstedt, M. Ber. Dtsch. Chem. Ges. 1889, 23, 1370-1374.
  5. Rothemund, P.; Gage, C. L. J. Am. Chem. Soc. 1955, 77, 3340-3342. https://doi.org/10.1021/ja01617a056
  6. Gale, P. A.; Sessler, J. L.; Kral, V.; Lynch, V. J. Am. Chem. Soc. 1996, 118, 5140-5141. https://doi.org/10.1021/ja960307r
  7. Gale, P. A.; Sessler, J. L.; Kral, V. Chem. Commun. 1998, 1-8.
  8. Gale, P. A.; Anzenbacher, P.; Sessler, J. L. Coord. Chem. Rev. 2001, 222, 57-102. https://doi.org/10.1016/S0010-8545(01)00346-0
  9. Gale, P.; Lee, C.-H. Top. Heterocycl. Chem. 2010, DOI: 10.1007/7081, 2010, 30, Springer.
  10. Sessler, J. L.; An, D. Q.; Cho, W. S.; Lynch, V.; Yoon, D. W.; Hong, S. J.; Lee, C. H. J. Org. Chem. 2005, 70, 1511-1517. https://doi.org/10.1021/jo048480q
  11. Piatek, P.; Lynch, V. M.; Sessler, J. L. J. Am. Chem. Soc. 2004, 126, 16073-16076. https://doi.org/10.1021/ja045218q
  12. Sessler, J. L.; An, D. Q.; Cho, W. S.; Lynch, V.; Marquez, J. Chem. Eur. J. 2005, 11, 2001-2011 https://doi.org/10.1002/chem.200400894
  13. Cafeo, G.; Kohnke, F. H.; White, A. L. P.; Garozzo, D.; Messina, A. Chem. Eur. J. 2007, 13, 649-656. https://doi.org/10.1002/chem.200600452
  14. Jain, V. K.; Mandalia, H. C.; Suresh, E. J. Inc. Phenom. 2008, 62, 167-178. https://doi.org/10.1007/s10847-008-9453-1
  15. Jain, V. K.; Mandalia, H. C. J. Inc. Phenom. 2009, 63, 27-35. https://doi.org/10.1007/s10847-008-9485-6
  16. Chauhan, S. M. S.; Garg, B.; Bisht, T. Molecules 2007, 12, 2458-2466. https://doi.org/10.3390/12112458
  17. Kishan, M. R.; Rani, V. R.; Kulkarni, S. J.; Raghavan, K. V. J. Mol. Cat. 2005, A 237, 155-160. https://doi.org/10.1016/j.molcata.2005.03.006
  18. Kumar, A.; Ahmad, I.; Rao, M. S. Can. J. Chem. 2008, 86, 899-902. https://doi.org/10.1139/v08-121
  19. Chacon-Garcia, L.; Chavez, L.; Cacho, D. R.; Altamirano-Hernandez, J. Beilstein J. Org. Chem. 2009, 5, No. 2. DOI:10.3762/bjoc.5.2.
  20. Aleskovic, M.; Halasz, I.; Basaric, N.; Mlinaric-Majerski, K. Tetrahedron 2009, 65, 2051-2058. https://doi.org/10.1016/j.tet.2009.01.007
  21. Yang, W. Z.; Yin, Z. M.; Li, Z.; He, J. Q.; Cheng, J. P. Journal of Molecular Structure 2008, 889, 279-285. https://doi.org/10.1016/j.molstruc.2008.02.014
  22. Anzenbacher, P.; Jursikova, K.; Shriver, J. A.; Miyaji, H.; Lynch, V. M.; Sessler, J. L.; Gale, P. A. J. Org. Chem. 2000, 65, 7641-7645. https://doi.org/10.1021/jo005610w
  23. Anzenbacher, P.; Try, A. C.; Miyaji, H.; Jursikova, K.; Lynch, V. M.; Marquez, M.; Sessler, J. L. J. Am. Chem. Soc. 2000, 122, 10268-10272. https://doi.org/10.1021/ja002112w
  24. Miyaji, H.; Anzenbacher, P.; Sessler, J. L.; Bleasdale, E. R.; Gale, P. A. Chem. Commun. 1999, 1723-1724.
  25. Sessler, J. L.; Gale, P. A.; Genge, J. W. Chem. Eur. J. 1998, 4, 1095-1099. https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1095::AID-CHEM1095>3.0.CO;2-1
  26. Gale, P. A.; Sessler, J. L.; Allen, W. E.; Tvermoes, N. A.; Lynch, V. Chem. Commun. 1997, 665-666.
  27. Dey, S.; Pal, K.; Sarkar, S. Tetrahedron Lett. 2006, 47, 5851-5854. https://doi.org/10.1016/j.tetlet.2006.06.085
  28. Dey, S.; Pal, K.; Sarkar, S. Tetrahedron Lett. 2008, 49, 960-964. https://doi.org/10.1016/j.tetlet.2007.12.025
  29. Chupakhin, O. N.; Itsikson, N. A.; Bashirov, S. S.; Beresnev, D. G.; Rusinov, G. L. Heterocycles 2005, 66, 543-548. https://doi.org/10.3987/COM-05-S(K)6
  30. Depraetere, S.; Smet, M.; Dehaen, W. Angew. Chem. Int. Ed. Engl. 1999, 38, 3359-3361. https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3359::AID-ANIE3359>3.0.CO;2-K
  31. Anzenbacher, P.; Nishiyabu, R.; Palacios, M. A. Coord. Chem. Rev. 2006, 250, 2929-2938. https://doi.org/10.1016/j.ccr.2006.09.001
  32. Dehaen, W.; Gale, P. A.; Garcia-Garrido, S. E.; Kostermans, M.; Light, M. E. New J. Chem. 2007, 31, 691-696. https://doi.org/10.1039/b616467f
  33. Nishiyabu, R.; Palacios, M. A.; Dehaen, W.; Anzenbacher, P. J. Am. Chem. Soc. 2006, 128, 11496-11504. https://doi.org/10.1021/ja0622150
  34. Gale, P. A.; Sessler, J. L.; Král, V.; Lynch, V. J. Am. Chem. Soc. 1996, 118, 5140-5141. https://doi.org/10.1021/ja960307r
  35. Custelcean, R.; Delmau, L. H.; Moyer, B. A.; Sessler, J. L.; Cho, W. S.; Gross, D.; Bates, G. W.; Brooks, S. J.; Light, M. E.; Gale, P. A. Angew. Chem. Int. Ed. 2005, 44, 2537-2542. https://doi.org/10.1002/anie.200462945
  36. Bates, G. W.; Gale, P. A.; Light, M. E. Cryst. Eng. Comm. 2006, 8, 300-302. https://doi.org/10.1039/b600251j
  37. Bates, G. W.; Gale, P. A.; Light, M. E. Supramolecular Chem. 2008, 20, 23-28. https://doi.org/10.1080/10610270601089378
  38. Sessler, J. L.; Gross, D. E.; Cho, W. S.; Lynch, V. M.; Schmidtchen, F. P.; Bates, G. W.; Light, M. E.; Gale, P. A. J. Am. Chem. Soc. 2006, 128, 12281-12288. https://doi.org/10.1021/ja064012h
  39. Sessler, J. L.; Cho, W. S.; Gross, D. E.; Shriver, J. A.; Lynch, V. M.; Marquez, M. J. Org. Chem. 2005, 70, 5982-5986. https://doi.org/10.1021/jo050662c
  40. Bruno, G.; Cafeo, G.; Kohnke, F. H.; Nicolo, F. Tetrahedron 2007, 63, 10003-10010. https://doi.org/10.1016/j.tet.2007.07.060
  41. Cafeo, G.; Kohnke, F. H.; Valenti, L.; White, A. J. P. Chem. Eur. J. 2008, 14, 11593-11600. https://doi.org/10.1002/chem.200800819
  42. Yoo, J.-D.; Jeoung, E.-H.; Lee, C.-H. Supramolecular Chem. 2009, 21, 164-172. https://doi.org/10.1080/10610270802516666
  43. Yoo, J.; Park, I.-W.; Kim, T.-W.; Lee, C.-H. Bull. Korean Chem. Soc. 2010, 31, 630-634. https://doi.org/10.5012/bkcs.2010.31.03.630
  44. Sessler, J. L.; Kim, S.-K.; Gross, D. E.; Lee, C.-H.; Kim, J.-S.; Lynch, V. M. J. Am. Chem. Soc. 2008, 130, 13162-13166. https://doi.org/10.1021/ja804976f
  45. Gil-Ramirez, G.; Benet-Buchholz, J.; Escudero-Adan, E. C.; Ballester, P. J. Am. Chem. Soc. 2007, 129, 3820-3821. https://doi.org/10.1021/ja070037k
  46. Hong, S.-J.; Yoo, J.; Kim, S.-H.; Kim, J.-S.; Yoon, J.; Lee, C.-H. Chem. Commun. 2008, 189-191.
  47. Sessler, J. L.; Anzenbacher, P.; Shriver, J. A.; Jursikova, K.; Lynch, V. M.; Marquez, M. J. Am. Chem. Soc. 2000, 122, 12061-12062. https://doi.org/10.1021/ja005650h
  48. Sessler, J. L.; Cho, W.-S.; Gross, D. E.; Shriver, J. A.; Lynch, V. M.; Marquez, M. J. Org. Chem. 2005, 70, 5982-5986. https://doi.org/10.1021/jo050662c
  49. Yoon, D. W.; Hwang, H.; Lee, C.-H. Angew. Chem. Int. Ed. 2002, 41, 1757-1759. https://doi.org/10.1002/1521-3773(20020517)41:10<1757::AID-ANIE1757>3.0.CO;2-0
  50. Lee, C.-H.; Na, H.-K.; Yoon, D.-W.; Won, D.-H.; Cho, W.-S.; Lynch, V. M.; Shevchuk, S. V.; Sessler, J. L. J. Am. Chem. Soc. 2003, 125, 7301-7306. https://doi.org/10.1021/ja029175u
  51. Lee, C.-H.; Lee, J.-S.; Na, H.-K.; Yoon, D.-W.; Miyaji, H.; Cho, W.-S.; Sessler, J. L. J. Org. Chem. 2005, 70, 2067-2074. https://doi.org/10.1021/jo0487146
  52. Miyaji, H.; Kim, H.-K.; Sim, E.-K; Lee, C.-K.; Cho, W.-S.; Sessler, J. L.; Lee, C.-H. J. Am. Chem. Soc. 2005, 127, 12510-12512. https://doi.org/10.1021/ja053612y
  53. Jeong, S.-D.; Yoo, J.; Na, H.-K.; Chi, D.-Y.; Lee, C.-H. Supramolecular Chem. 2007, 19, 271-275. https://doi.org/10.1080/10610270701358517
  54. Miyaji, H.; Hong, S.-J.; Jeong, S.-D.; Yoon, D.-W.; Na, H.-K.; Hong, J.; Ham, S.; Sessler, J. L.; Lee, C.-H. Angew. Chem. Int. Ed. 2007, 46, 2508-2511. https://doi.org/10.1002/anie.200604161
  55. Kim, S.-H.; Hong, S.-J.; Yoo, J.; Kim, S.-K.; Sessler, J. L.; Lee, C.-H. Org. Lett. 2009, 11, 3626-3629. https://doi.org/10.1021/ol901361h
  56. Panda, P. K.; Lee, C.-H. Org. Lett. 2004, 6, 671-674. https://doi.org/10.1021/ol0360750
  57. Panda, P. K.; Lee, C.-H. J. Org. Chem. 2005, 70, 3148-3156. https://doi.org/10.1021/jo047993u
  58. Lee, C.-H.; Yoon, D.-W.; Sohn, H.-Y.; Song, M.-Y. Supramol. Chem. 2007, 19, 265-270. https://doi.org/10.1080/10610270701358509
  59. Bucher, C.; Zimmerman, R. S.; Lynch, V. M.; Sessler, J. L. J. Am. Chem. Soc. 2001, 123, 9716-9717. https://doi.org/10.1021/ja016629z
  60. Bucher, C.; Zimmerman, R. S.; Lynch, V. M.; Sessler, J. L. Chem. Commun. 2003, 1646-1647.
  61. Lee, C.-H.; Miyaji, H.; Yoon, D.-W.; Sessler, J. L. Chem. Commun. 2008, 24-34.
  62. Hong, S.-J.; Yoo, J.; Yoon, D.-W.; Yoon, J.; Kim, J.-S.; Lee, C.-H. Chem. Asian J. 2010, 5, 768-772. https://doi.org/10.1002/asia.200900518
  63. Gross, D. E.; Yoon, D.-W.; Lynch, V. M.; Lee, C.-H.; Sessler, J. L. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 81-85. https://doi.org/10.1007/s10847-009-9645-3
  64. Lee, C.-H. 2010, unpublished results.
  65. Wintergerst, M. P.; Levitskaia, T. G.; Moyer, B. A.; Sessler, J. L.; Delmau, L. H. J. Am. Chem. Soc. 2008, 130, 4129-4139. https://doi.org/10.1021/ja7102179
  66. Fisher, M. G.; Gale, P. A.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; Schmidtchen, F. P.; Tong, C. C. Chem. Commun. 2009, 3017-3019.
  67. Amiri, A. A.; Safavi, A.; Hasaninejad, A. R.; Shrghi, H.; Shamsipur, M. J. Membrane Sci. 2008, 325, 295-300. https://doi.org/10.1016/j.memsci.2008.07.041
  68. Aydogan, A.; Coady, D. J.; Lynch, V. M.; Akar, A.; Marquez, M.; Bielawski, C. W.; Sessler, J. L. Chem. Commun. 2008, 1455-1457.
  69. Zyryanov, G. V.; Kinstle, T. H.; Anzenbacher, P. Synlett 2008, 1171-1174.
  70. Kaledkowski, A.; Trochimczuk, A. W. Separation Science and Technology 2006, 41, 3431-3447. https://doi.org/10.1080/01496390600851715
  71. Kaledkowski, A.; Trochimczuk, A. W. Reactive & Functional Polymers 2006, 66, 957-966. https://doi.org/10.1016/j.reactfunctpolym.2006.01.005
  72. Valente, A. J. M.; Jimenez, A.; Simoes, A. C.; Burrows, H. D.; Polishchuk, A. Y.; Lobo, V. M. M. European Polymer Journal 2007, 43, 2433-2442. https://doi.org/10.1016/j.eurpolymj.2007.03.047
  73. Martinez-Garcia, H.; Morales, D.; Perez, J.; Coady, D. J.; Bielawski, C. W.; Gross, D. E.; Cuesta, L.; Marquez, M.; Sessler, J. L. Organometallics 2007, 26, 6511-6514. https://doi.org/10.1021/om700958c
  74. Cafeo, G.; De Rosa, M.; Kohnke, F. H.; Neri, P.; Soriente, A.; Valenti, L. Tetrahedron Lett. 2008, 49, 153-155. https://doi.org/10.1016/j.tetlet.2007.10.148
  75. Yoo, J.; Kim, Y.; Kim, S.-J.; Lee, C.-H. Chem. Commun. 2010, 5449-5451.
  76. Park, J.-S.; Karnas, E.; Ohkubo, K.; Chen, P.; Kadish, K. M.; Fukuzumi, S.; Bielawski, C. W.; Hudnall, T. W.; Lynch, V. M.; Sessler, J. L. Science 2010, 329, 1324-1327. https://doi.org/10.1126/science.1192044

Cited by

  1. ChemInform Abstract: Versatilities of Calix[4]pyrrole Based Anion Receptors vol.42, pp.32, 2011, https://doi.org/10.1002/chin.201132251
  2. Isotopic Labeling Study of the Formation of Calix[5]pyrroles Catalyzed by Bi(NO3)3 vol.3, pp.3, 2013, https://doi.org/10.3390/catal3030588
  3. Four Metalloporphyrinic Frameworks as Heterogeneous Catalysts for Selective Oxidation and Aldol Reaction vol.52, pp.7, 2013, https://doi.org/10.1021/ic3019502
  4. Analytical applications of nano-baskets of calix[4]pyrroles vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0284-8
  5. Remarkably selective, non-linear allosteric regulation of anion binding by a tetracationic calix[4]pyrrole homodimer vol.51, pp.26, 2015, https://doi.org/10.1039/C5CC00487J
  6. Probing and evaluating anion–π interaction in meso-dinitrophenyl functionalized calix[4]pyrrole isomers vol.52, pp.74, 2016, https://doi.org/10.1039/C6CC04562F
  7. A switch-off fluorescence probe towards Pb(II) and cu(II) ions based on a calix[4]pyrrole bearing amino-quinoline group vol.32, pp.8, 2017, https://doi.org/10.1002/bio.3336
  8. -Phosphorylated Calixarene and 1-Phenyl-3-methyl-4-benzoyl-pyrazalone-5 vol.32, pp.10, 2014, https://doi.org/10.1002/cjoc.201400470
  9. -π (ethynyl) extension vol.54, pp.57, 2018, https://doi.org/10.1039/C8CC04393K
  10. Use of Graphite Oxide and Graphene Oxide as Catalysts in the Synthesis of Dipyrromethane and Calix[4]pyrrole vol.16, pp.9, 2011, https://doi.org/10.3390/molecules16097256
  11. Decoration of Gold Nanoparticles by a Double‐Armed Calix[4]pyrrole: A Receptor‐Decorated Nanoensemble for Anion Sensing and Extraction vol.19, pp.19, 2011, https://doi.org/10.1002/chem.201300472
  12. Tricyanovinyl substituted calix[4]pyrrole: an old yet new potential chemosensor for biothiols vol.3, pp.26, 2011, https://doi.org/10.1039/c3ra40206a
  13. Versatilities of graphene-based catalysts in organic transformations vol.1, pp.1, 2013, https://doi.org/10.1680/gmat.12.00008
  14. Recent Advancements in Calix[4]pyrrole‐Based Anion‐Receptor Chemistry vol.2015, pp.18, 2011, https://doi.org/10.1002/ejoc.201403701
  15. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study vol.1130, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2016.10.003
  16. Novel calix[4]pyrrole assembly: Punctilious recognition of F and Cu+2 ions vol.1149, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.08.006
  17. meso-Octamethylcalix[4]pyrrole as an effective macrocyclic receptor for the univalent thallium cation in the gas phase: Experimental and theoretical study vol.1153, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2017.09.103
  18. Supramolecular Luminescent Sensors vol.119, pp.1, 2011, https://doi.org/10.1021/acs.chemrev.8b00260
  19. DFT study of guest-responsive cooperative effects: Inclusion complexation of alcohols with calix[4]pyrrole vol.150, pp.7, 2011, https://doi.org/10.1007/s00706-019-02436-0
  20. New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry vol.9, pp.66, 2011, https://doi.org/10.1039/c9ra07399j
  21. Strapped calix[4]pyrroles: from syntheses to applications vol.49, pp.3, 2011, https://doi.org/10.1039/c9cs00528e
  22. Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine vol.2021, pp.31, 2011, https://doi.org/10.1002/ejoc.202100620
  23. Calix[4]pyrrole based scrupulous probe for track on of tryptophan: Host-guest interaction, in silico modeling and molecular docking insights vol.554, pp.None, 2022, https://doi.org/10.1016/j.chemphys.2021.111426