DOI QR코드

DOI QR Code

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

  • Ha, Tai-You (Department of Immunology, Chonbuk National University Medical School)
  • Received : 2011.01.11
  • Accepted : 2011.02.17
  • Published : 2011.02.28

Abstract

The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.

Keywords

References

  1. Gershon RK, Kondo K: Infectious immunological tolerance. Immunology 21;903-914, 1971
  2. Gershon RK, Cohen P, Hencin R, Liebhaber SA: Suppressor T cells. J Immunol 108;586-590, 1972
  3. Ha TY, Waksman BH: Role of the thymus in tolerance. X. "Suppressor" activity of antigen-stimulated rat thymocytes transferred to normal recipients. J Immunol 110;1290-1299, 1973
  4. Ha TY, Waksman BH, Treffers HP: The thymic suppressor cell. I. Separation of subpopulations with suppressor activity. J Exp Med 139;13-23, 1974 https://doi.org/10.1084/jem.139.1.13
  5. Ha TY, Waksman BH, Treffers HP: The thymic suppre-sor cell. II. Metabolic requirements of suppressor activity. Immunol Commun 3;351-359, 1974 https://doi.org/10.3109/08820137409061115
  6. Mudd PA, Teague BN, Farris AD: Regulatory T cells and systemic lupus erythematosus. Scand J Immunol 64;211- 218, 2006 https://doi.org/10.1111/j.1365-3083.2006.01808.x
  7. Waksman BH: Tolerance, the thymus, and suppressor T cells. Clin Exp Immunol 28;363-374, 1977
  8. Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune tolerance. Cell 133;775-787, 2008 https://doi.org/10.1016/j.cell.2008.05.009
  9. Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22;531-562, 2004 https://doi.org/10.1146/annurev.immunol.21.120601.141122
  10. Ziegler SF: FOXP3: Of Mice and Men. Ann Rev Immunol 24;209-226, 2006 https://doi.org/10.1146/annurev.immunol.24.021605.090547
  11. Qin FX: Dynamic behavior and function of Foxp3+ regulatory T cells in tumor bearing host. Cell Mol Immunol 6;3-13, 2009 https://doi.org/10.1038/cmi.2009.2
  12. Huehn J, Polansky JK, Hamann A: Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9;83-89, 2009 https://doi.org/10.1038/nri2474
  13. Ha TY: Regulatory T cell therapy for autoimmune disease. Immune Netw 8;107-123, 2008 https://doi.org/10.4110/in.2008.8.4.107
  14. Ha TY: The role of suppressor T cells in bacterial infections. KAST Rev Modern Sci & Technol 4;105-120, 2008
  15. Shevach EM: Mechanisms of foxp3+ T regulatory cellmediated suppression. Immunity 30;636-645, 2009 https://doi.org/10.1016/j.immuni.2009.04.010
  16. Sakaguchi S, Miyara M, Costantino CM, Hafler DA: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10;490-500, 2010 https://doi.org/10.1038/nri2785
  17. Ha TY: The role of suppressor T cells in mycobacterial Infection. Korean Lepr Bull 41;3-25, 2008
  18. Ha TY: The role of suppressor T cells in bacterial infections. KAST Rev Modern Sci & Technol 4;105-120, 2008
  19. Beyer M, Schultze JL: Regulatory T cells in cancer. Blood 108;804-811, 2006 https://doi.org/10.1182/blood-2006-02-002774
  20. Curiel TJ: Tregs and rethinking cancer immunotherapy. J Clin Invest 117;1167-1174, 2007 https://doi.org/10.1172/JCI31202
  21. Curiel TJ: Regulatory T cells and treatment of cancer. Curr Opin Immunol 20;241-246, 2008 https://doi.org/10.1016/j.coi.2008.04.008
  22. Fietta AM, Morosini M, Passadore I, Cascina A, Draghi P, Dore R, Rossi S, Pozzi E, Meloni F: Systemic inflammatory response and downmodulation of peripheral CD25+ Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol 70;477-486, 2009 https://doi.org/10.1016/j.humimm.2009.03.012
  23. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM: Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112;610-618, 2008 https://doi.org/10.1182/blood-2008-01-135319
  24. Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, Zhang Q, Lonning S, Teicher BA, Lee C: Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor- derived TGF-beta. J Immunol 178;2883-2892, 2007 https://doi.org/10.4049/jimmunol.178.5.2883
  25. Zou W: Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6;295-307, 2006 https://doi.org/10.1038/nri1806
  26. Lizee G, Radvanyi LG, Overwijk WW, Hwu P: Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res 12;4794- 4803, 2006 https://doi.org/10.1158/1078-0432.CCR-06-0944
  27. Riley JL, June CH, Blazar BR: Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30;656-665, 2009 https://doi.org/10.1016/j.immuni.2009.04.006
  28. Generali D, Bates G, Berruti A, Brizzi MP, Campo L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S, Dogliotti L, Banham AH, Harris AL, Bottini A, Fox SB: Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15;1046-1051, 2009 https://doi.org/10.1158/1078-0432.CCR-08-1507
  29. Casares N, Rudilla F, Arribillaga L, Llopiz D, Riezu-Boj JI, Lozano T, Lopez-Sagaseta J, Guembe L, Sarobe P, Prieto J, Borras-Cuesta F, Lasarte JJ: A peptide inhibitor of FOXP3 impairs regulatory T cell activity and improves vaccine efficacy in mice. J Immunol 185;5150-5159, 2010 https://doi.org/10.4049/jimmunol.1001114
  30. Xiao Y, Li B, Zhou Z, Hancock WW, Zhang H, Greene MI: Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr Opin Immunol 22;583-591, 2010 https://doi.org/10.1016/j.coi.2010.08.013
  31. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116;281-297, 2004 https://doi.org/10.1016/S0092-8674(04)00045-5
  32. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75;855-862, 1993 https://doi.org/10.1016/0092-8674(93)90530-4
  33. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75;843-854, 1993 https://doi.org/10.1016/0092-8674(93)90529-Y
  34. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature 391;806-811, 1998 https://doi.org/10.1038/35888
  35. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D: Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10;111-122, 2010 https://doi.org/10.1038/nri2708
  36. Navarro F, Lieberman J: Small RNAs guide hematopoietic cell differentiation and function. J Immunol 184;5939- 5947, 2010 https://doi.org/10.4049/jimmunol.0902567
  37. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A: MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16;1087-1095, 2010 https://doi.org/10.1261/rna.1804410
  38. Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science 303;83-86, 2004 https://doi.org/10.1126/science.1091903
  39. Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10;126-139, 2009 https://doi.org/10.1038/nrm2632
  40. Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11;228-234, 2009 https://doi.org/10.1038/ncb0309-228
  41. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 136;215-233, 2009 https://doi.org/10.1016/j.cell.2009.01.002
  42. Schetter AJ, Heegaard NH, Harris CC: Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31;37-49, 2010 https://doi.org/10.1093/carcin/bgp272
  43. Miller BH, Wahlestedt C: MicroRNA dysregulation in psychiatric disease. Brain Res 1338;89-99, 2010 https://doi.org/10.1016/j.brainres.2010.03.035
  44. Pallante P, Visone R, Croce CM, Fusco A: Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer 17;F91-104, 2010 https://doi.org/10.1677/ERC-09-0217
  45. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R Jr, Chen A, Hornstein E: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107;13111-13116, 2010 https://doi.org/10.1073/pnas.1006151107
  46. Radom-Aizik S, Zaldivar F Jr, Oliver S, Galassetti P, Cooper DM: Evidence for microRNA involvement in exercise- associated neutrophil gene expression changes. J Appl Physiol 109;252-261, 2010. [Epub 2010 Jan 28] https://doi.org/10.1152/japplphysiol.01291.2009
  47. Latronico MV, Condorelli G: MicroRNAs and cardiac pathology. Nat Rev Cardiol 6;419-429, 2009
  48. Miranda RC, Pietrzykowski AZ, Tang Y, Sathyan P, Mayfield D, Keshavarzian A, Sampson W, Hereld D: MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 34;575-587, 2010 https://doi.org/10.1111/j.1530-0277.2009.01126.x
  49. Wang QZ, Xu W, Habib N, Xu R: Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 9;572-594, 2009 https://doi.org/10.2174/156800909788486731
  50. Kato M, Arce L, Natarajan R: MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 4;1255-1266, 2009 https://doi.org/10.2215/CJN.00520109
  51. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM: MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23;265-275, 2009 https://doi.org/10.1210/me.2008-0387
  52. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman- Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C: Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81;829-834, 2007 https://doi.org/10.1086/521200
  53. Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA: A miRNA signature of prion induced neurodegeneration. PLoS One 3;e3652, 2008 https://doi.org/10.1371/journal.pone.0003652
  54. Pandey AK, Agarwal P, Kaur K, Datta M: MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23;221-232, 2009 https://doi.org/10.1159/000218169
  55. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD: MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9;839-845, 2008 https://doi.org/10.1038/ni.f.209
  56. Lodish HF, Zhou B, Liu G, Chen CZ: Micromanagement of the immune system by microRNAs. Nat Rev Immunol 8;120-130, 2008 https://doi.org/10.1038/nri2252
  57. Xiao C, Rajewsky K: MicroRNA control in the immune system: basic principles. Cell 136;26-36, 2009 https://doi.org/10.1016/j.cell.2008.12.027
  58. Lindsay MA: microRNAs and the immune response. Trends Immunol 29;343-351, 2008 https://doi.org/10.1016/j.it.2008.04.004
  59. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A: Requirement of bic/microRNA-155 for normal immune function. Science 316;608-611, 2007 https://doi.org/10.1126/science.1139253
  60. Bird L: Regulatory T cells: microRNAs maintain identity. Nat Rev Immunol 8;752, 2008
  61. Taganov KD, Boldin MP, Baltimore D: MicroRNAs and immunity: tiny players in a big field. Immunity 26;133-137, 2007 https://doi.org/10.1016/j.immuni.2007.02.005
  62. Kosaka N, Izumi H, Sekine K, Ochiya T: microRNA as a new immune-regulatory agent in breast milk. Silence 1;7, 2010 https://doi.org/10.1186/1758-907X-1-7
  63. Pedersenrene I, David M: MicroRNAs in the immune response. Cytokine 43;391-394, 2008 https://doi.org/10.1016/j.cyto.2008.07.016
  64. Sonkoly E, Stahle M, Pivarcsi A: MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18;131-140, 2008 https://doi.org/10.1016/j.semcancer.2008.01.005
  65. Tsitsiou E, Lindsay MA: microRNAs and the immune response. Curr Op Pharmacol 9;514-520, 2009 https://doi.org/10.1016/j.coph.2009.05.003
  66. Liston A, Linterman M, Lu LF: MicroRNA in the adaptive Immune system, in sickness and in Health. J Clin Immunol 30;339-346, 2010 https://doi.org/10.1007/s10875-010-9378-5
  67. Witwer KW, Sisk JM, Gama L, Clements JE: MicroRNA regulation of $IFN-{\beta}$ protein expression: rapid and sensitive modulation of the Innate Immune Response. J Immunology 184;2369-2376, 2010 https://doi.org/10.4049/jimmunol.0902712
  68. Pauley KM, Cha S, Chan EKL: MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32;189-194, 2009 https://doi.org/10.1016/j.jaut.2009.02.012
  69. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, Li N, Cao X: MiroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J Immunol 185;7244-7251, 2010 https://doi.org/10.4049/jimmunol.1001573
  70. Yang Y, Ago T, Zhai P, Abdellartif M, Sadoshima J: Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108;305-313, 2011 https://doi.org/10.1161/CIRCRESAHA.110.228437
  71. Hoefig KP, Heissmeyer V: MicroRNAs grow up in the immune system. Curr Opin Immunol 20:281-287, 2008 https://doi.org/10.1016/j.coi.2008.05.005
  72. Lynam-Lennon N, Maher SG, Reynolds JV: The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84;55-71, 2009 https://doi.org/10.1111/j.1469-185X.2008.00061.x
  73. Zhang B, Pan X, Cobb GP, Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol 302;1-12, 2007 https://doi.org/10.1016/j.ydbio.2006.08.028
  74. Hernando E: microRNAs and cancer: role in tumorigenesis, patient classification and therapy. Clin Transl Oncol 9;155-160, 2007 https://doi.org/10.1007/s12094-007-0029-0
  75. Negrini M, Nicoloso MS, Calin GA: MicroRNAs and cancer-- new paradigms in molecular oncology. Curr Opin Cell Biol 21;470-479, 2009 https://doi.org/10.1016/j.ceb.2009.03.002
  76. Ortholan C, Puissegur MP, Ilie M, Barbry P, Mari B, Hofman P: MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem, 16;1047-1061, 2009 https://doi.org/10.2174/092986709787581833
  77. Osaki M, Takeshita F, Ochiya T: MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers 13; 658-670, 2008 https://doi.org/10.1080/13547500802646572
  78. Lee YS, Dutta A; MicroRNAs in cancer. Annu Rev Pathol 4;199-227, 2009 https://doi.org/10.1146/annurev.pathol.4.110807.092222
  79. Saito Y, Suzuki H, Hibi T: The role of microRNAs in gastrointestinal cancers. J Gastroenterol 44(Suppl 19):18-22, 2009 https://doi.org/10.1007/s00535-008-2285-3
  80. Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, Li X, Tang H: MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 276;5537-5546, 2009 https://doi.org/10.1111/j.1742-4658.2009.07237.x
  81. Weber MJ: New human and mouse microRNA genes found by homology search. FEBS J 272;59-73, 2005
  82. Zhang B, Farwell MA: microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med 12;3-21, 2008
  83. Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 6;857-866, 2006 https://doi.org/10.1038/nrc1997
  84. Chong MM, Rasmussen JP, Rudensky AY, Littman DR: The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205;2005-2017, 2008 https://doi.org/10.1084/jem.20081219
  85. Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY: Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 205;1993-2004, 2008 https://doi.org/10.1084/jem.20081062
  86. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA: Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205;1983-1991, 2008 https://doi.org/10.1084/jem.20080707
  87. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med 203;2519-2527, 2006 https://doi.org/10.1084/jem.20061692
  88. Lu TX, Munitz A, Rothenberg ME: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182;4994-5002, 2009 https://doi.org/10.4049/jimmunol.0803560
  89. Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, Colombo T, Citarella F, Barnaba V, Minisola G, Galeazzi M, Macino G: miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71;206-211, 2010 https://doi.org/10.1016/j.humimm.2009.11.008
  90. Waldman SA, Terzic A: A study of microRNAs in silico and in vivo: diagnostic and therapeutic applications in cancer. FEBS J 276;2157-2164, 2009 https://doi.org/10.1111/j.1742-4658.2009.06934.x
  91. Waldman SA, Terzic A: Applications of microRNA in cancer: Exploring the advantages of miRNA. Clin Transl Sci 2;248-249, 2009 https://doi.org/10.1111/j.1752-8062.2009.00110.x
  92. Belver L, de Yébenes VG, Ramiro AR: MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33; 713-722, 2010 https://doi.org/10.1016/j.immuni.2010.11.010
  93. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS, Su TJ, Chiang CC, Li HN, Hong QS, Su HY, Chen CC, Chen WJ, Liu CC, Chan WK, Chen WJ, Li KC, Chen JJ, Yang PC: MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13;48-57, 2008 https://doi.org/10.1016/j.ccr.2007.12.008
  94. Esau CC, Monia BP: Therapeutic potential for microRNAs. Adv Drug Deliv Rev 59;101-114, 2007 https://doi.org/10.1016/j.addr.2007.03.007
  95. Brase JC, Wuttig D, Kuner R, Sültmann H: Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9;306, 2010 https://doi.org/10.1186/1476-4598-9-306
  96. Fazi F, Nervi C: MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 79;553-561, 2008 https://doi.org/10.1093/cvr/cvn151
  97. Trang P, Weidhaas JB, Slack FJ: MicroRNAs as potential cancer therapeutics. Oncogene 27(Suppl 2);S52-57, 2008 https://doi.org/10.1038/onc.2009.353
  98. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA: Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445;931-935, 2007 https://doi.org/10.1038/nature05478
  99. Soifer HS, Rossi JJ, Saetrom P: MicroRNAs in disease and potential therapeutic applications. Mol Ther 15;2070-2079, 2007 https://doi.org/10.1038/sj.mt.6300311
  100. Barringhaus KG, Zamore PD: MicroRNAs: regulating a change of heart. Circulation 119;2217-2224, 2009 https://doi.org/10.1161/CIRCULATIONAHA.107.715839
  101. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103;2257-2261, 2006 https://doi.org/10.1073/pnas.0510565103
  102. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG: microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107;8231-8236, 2010 https://doi.org/10.1073/pnas.1002080107
  103. Slaby O, Svoboda M, Michalek J, Vyzula R: MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8;102, 2009 https://doi.org/10.1186/1476-4598-8-102
  104. Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10;704-714, 2009 https://doi.org/10.1038/nrg2634
  105. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/ TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179;5082-5089, 2007 https://doi.org/10.4049/jimmunol.179.8.5082
  106. Martino S, di Girolamo I, Orlacchio A, Datti A, Orlacchio A: MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009;654346, 2009
  107. Luo X, Tsai LM, Shen N, Yu D: Evidence for microRNAmediated regulation in rheumatic diseases. Ann Rheum Dis 69(Suppl 1);i30-36, 2010 https://doi.org/10.1136/ard.2009.117218
  108. Tili E, Michaille JJ, Costinean S, Croce CM: MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol 4;534-541, 2008
  109. Sheedy FJ, O'Neill LA: Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis 67(Suppl 3);iii50-55, 2008 https://doi.org/10.1136/ard.2008.100289
  110. Hooper LV, Macpherson AJ: Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10;159-169, 2010 https://doi.org/10.1038/nri2710
  111. Hubert P, Jacobs N, Caberg JH, Boniver J, Delvenne P: The cross-talk between dendritic and regulatory T cells: good or evil? J Leukoc Biol 82;781-794, 2007 https://doi.org/10.1189/jlb.1106694
  112. Toda A, Piccirillo CA: Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol 80;458-470, 2006 https://doi.org/10.1189/jlb.0206095
  113. Wang HY, Wang RF: Regulatory T cells and cancer. Curr Opin Immunol 19;217-223, 2007 https://doi.org/10.1016/j.coi.2007.02.004
  114. Han Y, Guo Q, Zhang M, Chen Z, Cao X: CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol 182;111-120, 2009 https://doi.org/10.4049/jimmunol.182.1.111
  115. Maggi E, Cosmi L, Liotta F, Romagnani P, Romagnani S, Annunziato F: Thymic regulatory T cells. Autoimmun Rev 4;579-586, 2005 https://doi.org/10.1016/j.autrev.2005.04.010
  116. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S: Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30;899-911, 2009 https://doi.org/10.1016/j.immuni.2009.03.019
  117. Buckner JH: Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10;849-859, 2010 https://doi.org/10.1038/nri2889
  118. Mabarrack NH, Turner NL, Mayrhofer G: Recent thymic origin, differentiation, and turnover of regulatory T cells. J Leukoc Biol 84;1287-1297, 2008 https://doi.org/10.1189/jlb.0308201
  119. Wan YY, Flavell RA: 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev 220;199-213, 2007 https://doi.org/10.1111/j.1600-065X.2007.00565.x
  120. Taylor AL, Llewelyn MJ: Superantigen-induced proliferation of human CD4+CD25- T cells is followed by a switch to a functional regulatory phenotype. J Immunol 185;6591-6598, 2010 https://doi.org/10.4049/jimmunol.1002416
  121. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM: Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184;3433-3441, 2010 https://doi.org/10.4049/jimmunol.0904028
  122. Curotto de Lafaille MA, Lafaille JJ: Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30;626-635, 2009 https://doi.org/10.1016/j.immuni.2009.05.002
  123. Kerdiles YM, Stone EL, Beisner DL, McGargill MA, Ch'en IL, Stockmann C, Katayama CD, Hedrick SM: Foxo transcription factors control regulatory T cell development and function. Immunity 33;890-904, 2010 https://doi.org/10.1016/j.immuni.2010.12.002
  124. Procaccini C, De Rosa V, Galgani M, Abanni L, Calì G, Porcellini A, Carbone F, Fontana S, Horvath TL, La Cava A, Matarese G: An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33;929- 941, 2010 https://doi.org/10.1016/j.immuni.2010.11.024
  125. Chougnet CA, Tripathi P, Lages CS, Raynor J, Sholl A, Fink P, Plas DR, Hildeman DA: A major role for Bim in regulatory T cell homeostasis. J Immunol 186;156-163, 2011 https://doi.org/10.4049/jimmunol.1001505
  126. Stary G, Klein I, Bauer W, Koszik F, Reininger B, Kohlhofer S, Gruber K, Skvara H, Jung T, Stingl G: Glucocorticosteroids modify Langerhans cells to produce $TGF-{\beta}$ and expand regulatory T cells. J Immunol 186; 103-112, 2011 https://doi.org/10.4049/jimmunol.1002485
  127. Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie AN, Maurer M, Rosenkranz AR, Wolf AM: IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186;83-91, 2011 https://doi.org/10.4049/jimmunol.1001183
  128. Baeke F, Korf H, Overbergh L, Verstuyf A, Thorrez L, Van Lommel L, Waer M, Schuit F, Gysemans C, Mathieu C: The vitamin D analog, TX527, promotes a human CD4+ CD25highCD127low regulatory T cell profile and induces a migratory signature specific for homing to sites of inflammation. J Immunol 186;132-142, 2011 https://doi.org/10.4049/jimmunol.1000695
  129. Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristán C, Victora GD, Zanin-Zhorov A, Dustin ML: Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28;79-105, 2010 https://doi.org/10.1146/annurev-immunol-030409-101308
  130. Chu CY, Rana TM: Small RNAs: regulators and guardians of the genome. J Cell Physiol 213;412-419 2007 https://doi.org/10.1002/jcp.21230
  131. Kim VN: Small RNAs: classification, biogenesis, and function. Mol Cells 19;1-15, 2005 https://doi.org/10.1016/j.molcel.2005.05.026
  132. Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB: Microarray analysis of microRNA expression in peripheral blood cells of systemic erythematosus patients. Lupus 16;936-946, 2007
  133. Cai X, Hagedorn CH, Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10;1957-1966, 2004 https://doi.org/10.1261/rna.7135204
  134. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18;3016-3027, 2004 https://doi.org/10.1101/gad.1262504
  135. Boyd SD: Everything you wanted to know about small RNA but were afraid to ask. Lab Invest 88;569-578, 2008 https://doi.org/10.1038/labinvest.2008.32
  136. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes 15;2654-2659, 2001 https://doi.org/10.1101/gad.927801
  137. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155;1151-1164, 1995
  138. Schickel R, Boyerinas B, Park SM, Peter ME: MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27;5959-5974, 2008 https://doi.org/10.1038/onc.2008.274
  139. Bendelac A, Savage PB, Teyton L: The biology of NKT cells. Annu Rev Immunol 25;297-336, 2007 https://doi.org/10.1146/annurev.immunol.25.022106.141711
  140. Pauley KM, Chan EK: MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci 1143:226-239, 2008 https://doi.org/10.1196/annals.1443.009
  141. Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA: Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8;240, 2007 https://doi.org/10.1186/1471-2164-8-240
  142. Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG: MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84;3023-3032, 2010 https://doi.org/10.1128/JVI.02203-09
  143. De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E, Gavioli R, Negrini M, Furlan R, Granieri E: Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226;165-171, 2010 https://doi.org/10.1016/j.jneuroim.2010.06.009
  144. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller- Ardogan M, Bonauer A, Zeiher AM, Dimmeler S: Circulating microRNAs in patients with coronary artery disease. Circ Res 107;677-684, 2010 https://doi.org/10.1161/CIRCRESAHA.109.215566
  145. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N: Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55;1944-1949, 2009 https://doi.org/10.1373/clinchem.2009.125310
  146. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105;10513-10518, 2008 https://doi.org/10.1073/pnas.0804549105
  147. Michael A, Barjracharya SD, Yuen PST, Zhou H, Star RA, Illei GG, Alevizos I: Exosome from human saliva as a source of microRNA biomarkers. Oral Dis 16;34-38, 2010 https://doi.org/10.1111/j.1601-0825.2009.01604.x
  148. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18;997-1006, 2008 https://doi.org/10.1038/cr.2008.282
  149. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D: MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104;1604-1609, 2007 https://doi.org/10.1073/pnas.0610731104
  150. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC, Turner M: microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27;847-859, 2007 https://doi.org/10.1016/j.immuni.2007.10.009
  151. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30;80-91, 2009 https://doi.org/10.1016/j.immuni.2008.11.010
  152. Zhu QY, Liu Q, Chen JX, Lan K, Ge BX: MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol 185;7435-7442, 2010 https://doi.org/10.4049/jimmunol.1000798
  153. Taganov KD, Boldin MP, Chang KJ, Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103;12481- 12486, 2006 https://doi.org/10.1073/pnas.0605298103
  154. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X: MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183;2150-2158, 2009 https://doi.org/10.4049/jimmunol.0900707
  155. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis C: The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31;220-231, 2009 https://doi.org/10.1016/j.immuni.2009.06.024
  156. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I: A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123;819-831, 2005 https://doi.org/10.1016/j.cell.2005.09.023
  157. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD: Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451;1125-1129, 2008 https://doi.org/10.1038/nature06607
  158. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ: miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129;147-161, 2007 https://doi.org/10.1016/j.cell.2007.03.008
  159. Lapaque N, Walzer T, Méresse S, Vivier E, Trowsdale J: Interactions between human NK cells and macrophages in response to Salmonella infection. J Immunol 182; 4339-4348, 2009 https://doi.org/10.4049/jimmunol.0803329
  160. Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O: Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9;1065- 1073, 2008 https://doi.org/10.1038/ni.1642
  161. Bezman NA, Cedars E, Steiner DF, Blelloch R, Hesslein DG, Lanier LL: Distinct requirements of microRNAs in NK cell activation, survival, and function. J Immunol 185; 3835-3846, 2010 https://doi.org/10.4049/jimmunol.1000980
  162. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K: Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132;860-874, 2008 https://doi.org/10.1016/j.cell.2008.02.020
  163. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J, Wilson CB, Brockdorff N, Fisher AG, Smale ST, Merkenschlager M: T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201;1367-1373, 2005 https://doi.org/10.1084/jem.20050572
  164. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K: Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202;261-269, 2005 https://doi.org/10.1084/jem.20050678
  165. Fedeli M, Napolitano A, Wong MP, Marcais A, de Lalla C, Colucci F, Merkenschlager M, Dellabona P, Casorati G; Dicer-dependent microRNA pathway controls invariant NKT cell development. J Immunol 183;2506-2512, 2009 https://doi.org/10.4049/jimmunol.0901361
  166. Rossi M, Young JW: Human dendritic cells: potent antigen- presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175;1373-1381, 2005 https://doi.org/10.4049/jimmunol.175.3.1373
  167. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P: MicroRNA-155 modulates the interleukin- 1 signaling pathway in activated human monocyte- derived dendritic cells. Proc Natl Acad Sci U S A 106;2735-2740, 2009 https://doi.org/10.1073/pnas.0811073106
  168. Holmstrøm K, Pedersen AW, Claesson MH, Zocca MB, Jensen SS: Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy. Hum Immunol 71;67-73, 2010 https://doi.org/10.1016/j.humimm.2009.10.001
  169. Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, Franceschini D, Meloni F, Barnaba V, Macino G: An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation- induced cell death in T lymphocytes. Blood 115; 265-273, 2010 https://doi.org/10.1182/blood-2009-06-225987
  170. Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, Kitagawa Y, Mandelbaum J, Haddad J Jr, Chen CZ, Califano A, Dalla-Favera R: Identification of the human mature B cell miRNome. Immunity 30;744-752, 2009 https://doi.org/10.1016/j.immuni.2009.03.017
  171. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102;3627-3632, 2005 https://doi.org/10.1073/pnas.0500613102
  172. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A: BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207;243-249, 2005 https://doi.org/10.1002/path.1825
  173. Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, Poppema S, van den Berg A: Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45;147- 153, 2006 https://doi.org/10.1002/gcc.20273
  174. Turner M, Vigorito E: Regulation of B- and T-cell differentiation by a single microRNA. Biochem Soc Trans 36;531-533, 2008 https://doi.org/10.1042/BST0360531
  175. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM: Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)- miR155 transgenic mice. Proc Natl Acad Sci U S A 103; 7024-7029, 2006 https://doi.org/10.1073/pnas.0602266103
  176. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K: Regulation of the germinal center response by microRNA-155. Science 316;604-608, 2007 https://doi.org/10.1126/science.1141229
  177. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K: MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131;146-159, 2007 https://doi.org/10.1016/j.cell.2007.07.021
  178. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF: miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104;7080-7085, 2007 https://doi.org/10.1073/pnas.0702409104
  179. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, Eisenreich T, Rajewsky K, Nussenzweig MC: MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28;630-638, 2008 https://doi.org/10.1016/j.immuni.2008.04.002
  180. Zhang J, Jima DD, Jacobs C, Fischer R, Gottwein E, Huang G, Lugar PL, Lagoo AS, Rizzieri DA, Friedman DR, Weinberg JB, Lipsky PE, Dave SS: Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood 113;4586-4594, 2009 https://doi.org/10.1182/blood-2008-09-178186
  181. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Pérez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB: A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15;763-774, 2001 https://doi.org/10.1016/S1074-7613(01)00227-8
  182. Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL: Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol 40;225-231, 2010
  183. Neilson JR, Zheng GX, Burge CB, Sharp PA: Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21;578-589, 2007 https://doi.org/10.1101/gad.1522907
  184. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S: Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325;1006-1010, 2009 https://doi.org/10.1126/science.1175870
  185. Tufekci KU, Oner MG, Genc S, Genc K: MicroRNAs and Multiple Sclerosis. Autoimmune Dis 2011;807426, 2010
  186. Divekar AA, Dubey S, Gangalum PR, Singh RR: Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 186;924-930, 2011 https://doi.org/10.4049/jimmunol.1002218
  187. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY: Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445;936-940, 2007 https://doi.org/10.1038/nature05563
  188. Zhou L, Seo KH, Wong HK, Mi QS: MicroRNAs and immune regulatory T cells. Int Immunopharmacol 9;524-527, 2009 https://doi.org/10.1016/j.intimp.2009.01.017
  189. Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E: Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182;2578-2582, 2009 https://doi.org/10.4049/jimmunol.0803162
  190. Redouane R, Hussein FK, Nabil EZ, Philippe L, Francoise R, Alexandru S, Haidar A, Mohamad M, Mohamad ER, Arsene B, Pedro R, Philippe M, Bassam B: Human natural Treg microRNA signature: Role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 39; 1-11, 2009
  191. Huang B, Zhao J, Lei Z, Shen S, Li D, Shen GX, Zhang GM, Feng ZH: miR-142-3p restricts cAMP production in CD4+CD25− T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep 10;180-185, 2009 https://doi.org/10.1038/embor.2008.224
  192. Fayyad-Kazan H, Rouas R, Merimi M, El Zein N, Lewalle P, Jebbawi F, Mourtada M, Badran H, Ezzeddine M, Salaun B, Romero P, Burny A, Martiat P, Badran B: Valproate treatment of human cord blood CD4-positive effector T cells confers on them the molecular profile (microRNA signature and FOXP3 expression) of natural regulatory CD4-positive cells through inhibition of histone deacetylase. J Biol Chem 285;20481-20491, 2010 https://doi.org/10.1074/jbc.M110.119628
  193. Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothe F, Simion A, Akl H, Mourtada M, El Rifai M, Burny A, Romero P, Martiat P, Badran B: Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 39;1608-1618, 2009 https://doi.org/10.1002/eji.200838509
  194. Hezova R, Slaby O, Faltejskova P, Mikulkova Z, Buresova I, Raja KR, Hodek J, Ovesna J, Michalek J: microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260;70-74, 2010 https://doi.org/10.1016/j.cellimm.2009.10.012
  195. Freier E, Weber CS, Nowottne U, Horn C, Bartels K, Meyer S, Hildebrandt Y, Luetkens T, Cao Y, Pabst C, Muzzulini J, Schnee B, Brunner-Weinzierl MC, Marangolo M, Bokemeyer C, Deter HC, Atanackovic D: Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology 35;663-673, 2010 https://doi.org/10.1016/j.psyneuen.2009.10.005
  196. Lu LF, Rudensky A: Molecular orchestration of differentiation and function of regulatory T cells. Genes Dev 23;1270-1282, 2009 https://doi.org/10.1101/gad.1791009
  197. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D, Rudensky AY: Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142;914-929, 2010 https://doi.org/10.1016/j.cell.2010.08.012
  198. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E: Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204; 1303-1310, 2007 https://doi.org/10.1084/jem.20062129
  199. Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB: MicroRNA targets in immune genes and the Dicer/ Argonaute and ARE machinery components. Mol Immunol 45;1995-2006, 2008 https://doi.org/10.1016/j.molimm.2007.10.035
  200. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137;1005-1017, 2009 https://doi.org/10.1016/j.cell.2009.04.021
  201. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353;1793-1801, 2005 https://doi.org/10.1056/NEJMoa050995
  202. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299;425-436, 2008 https://doi.org/10.1001/jama.299.4.425
  203. Waldman SA, Terzic A: MicroRNA signatures as diagnostic and therapeutic targets. Clin Chem 54;943-944, 2008 https://doi.org/10.1373/clinchem.2008.105353
  204. 204. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K: MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113;396-402, 2009
  205. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28;14341-14346, 2008 https://doi.org/10.1523/JNEUROSCI.2390-08.2008
  206. Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, Kipps TJ, Croce CM: Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res 61; 6640-6648, 2001
  207. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM: MicroRNA 29b functions in acute myeloid leukemia. Blood 114;5331-5341, 2009 https://doi.org/10.1182/blood-2009-03-211938
  208. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J: Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451;147-152, 2008 https://doi.org/10.1038/nature06487
  209. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B: Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3;499-506, 2010 https://doi.org/10.1161/CIRCGENETICS.110.957415
  210. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ: Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106;4402-4407, 2009 https://doi.org/10.1073/pnas.0813371106
  211. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126;1166- 1176, 2010
  212. Heneghan HM, Miller N, Kerin MJ: MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 10;543-550, 2010 https://doi.org/10.1016/j.coph.2010.05.010
  213. De Smaele E, Ferretti E, Gulino A: MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338;100-111, 2010 https://doi.org/10.1016/j.brainres.2010.03.103
  214. Zhi F, Chen X, Wang S, Xia X, Shi Y, Guan W, Shao N, Qu H, Yang C, Zhang Y, Wang Q, Wang R, Zen K, Zhang CY, Zhang J, Yang Y: The use of hsa-miR-21, hsa-miR- 181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 46;1640-1649, 2010 https://doi.org/10.1016/j.ejca.2010.02.003

Cited by

  1. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review) vol.41, pp.6, 2012, https://doi.org/10.3892/ijo.2012.1647
  2. MicroRNAs in parasitic diseases: Potential for diagnosis and targeting vol.186, pp.2, 2011, https://doi.org/10.1016/j.molbiopara.2012.10.001
  3. Epigenetics in autoimmune diseases with focus on type 1 diabetes vol.29, pp.1, 2011, https://doi.org/10.1002/dmrr.2375
  4. Silencing of miR155 Promotes the Production of Inflammatory Mediators in Guillain-Barré Syndrome In Vitro vol.36, pp.2, 2013, https://doi.org/10.1007/s10753-012-9551-5
  5. The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells vol.433, pp.4, 2011, https://doi.org/10.1016/j.bbrc.2013.03.022
  6. Predicting long non-coding RNAs using RNA sequencing vol.63, pp.1, 2013, https://doi.org/10.1016/j.ymeth.2013.03.019
  7. Clinical relevance of circulating cell-free microRNAs in cancer vol.11, pp.3, 2011, https://doi.org/10.1038/nrclinonc.2014.5
  8. A microRNA profile of human CD8 + regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes vol.12, pp.None, 2014, https://doi.org/10.1186/s12967-014-0218-x
  9. Noncoding RNAs as Novel Biomarkers in Prostate Cancer vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/591703
  10. Human coronary heart disease: importance of blood cellular miR-2909 RNomics vol.392, pp.1, 2014, https://doi.org/10.1007/s11010-014-2017-3
  11. MiRNome and transcriptome aided pathway analysis in human regulatory T cells vol.15, pp.5, 2011, https://doi.org/10.1038/gene.2014.20
  12. MicroRNA and diseases: Therapeutic potential as new generation of drugs vol.104, pp.None, 2011, https://doi.org/10.1016/j.biochi.2014.05.004
  13. Identification and Analysis of Differentially-Expressed microRNAs in Japanese Encephalitis Virus-Infected PK-15 Cells with Deep Sequencing vol.16, pp.1, 2011, https://doi.org/10.3390/ijms16012204
  14. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia vol.27, pp.3, 2011, https://doi.org/10.1016/j.cellsig.2014.12.003
  15. Differential Inflammatory MicroRNA and Cytokine Expression in Pulmonary Sarcoidosis vol.63, pp.2, 2011, https://doi.org/10.1007/s00005-014-0315-9
  16. Neuroprotective Effect of Hydrogen-Rich Saline in Global Cerebral Ischemia/Reperfusion Rats: Up-Regulated Tregs and Down-Regulated miR-21, miR-210 and NF-κB Expression vol.41, pp.10, 2011, https://doi.org/10.1007/s11064-016-1978-x
  17. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS) vol.6, pp.None, 2011, https://doi.org/10.1038/srep28006
  18. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells vol.11, pp.3, 2011, https://doi.org/10.1371/journal.pone.0150842
  19. Altered miRNA expression in pulmonary sarcoidosis vol.17, pp.None, 2011, https://doi.org/10.1186/s12881-016-0266-6
  20. MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice vol.85, pp.1, 2011, https://doi.org/10.1128/iai.00768-16
  21. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-18144-w
  22. MicroRNA expression profiles in human CD3 + T cells following stimulation with anti-human CD3 antibodies vol.10, pp.None, 2017, https://doi.org/10.1186/s13104-017-2442-y
  23. Toll-Like Receptor Stimulation by MicroRNAs in Acute Graft-vs.-Host Disease vol.9, pp.None, 2011, https://doi.org/10.3389/fimmu.2018.02561
  24. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors vol.8, pp.None, 2018, https://doi.org/10.3389/fonc.2018.00226
  25. MicroRNA values in children with rheumatic carditis: a preliminary study vol.38, pp.7, 2011, https://doi.org/10.1007/s00296-018-4069-2
  26. Whole blood microRNAs as potential biomarkers in post-operative early breast cancer patients vol.18, pp.None, 2011, https://doi.org/10.1186/s12885-018-4020-7
  27. Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-019-47234-0
  28. Cellular miR-2909 RNomics governs the genes that ensure immune checkpoint regulation vol.451, pp.1, 2011, https://doi.org/10.1007/s11010-018-3390-0
  29. The Role of MicroRNA in Paediatric Acute Lymphoblastic Leukaemia: Challenges for Diagnosis and Therapy vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/8941471
  30. Metabolism and Autoimmune Responses: The microRNA Connection vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01969
  31. Downregulation of miR-633 activated AKT/mTOR pathway by targeting AKT1 in lupus CD4+ T cells vol.28, pp.4, 2019, https://doi.org/10.1177/0961203319829853
  32. Cancer immunotherapy: present scenarios and the future of immunotherapy vol.62, pp.2, 2011, https://doi.org/10.1007/s13237-019-00273-4
  33. Genetic Factors and Psoriatic Arthritis vol.9, pp.3, 2019, https://doi.org/10.4236/ojra.2019.93010
  34. Specific PIWI-interacting small noncoding RNA expression patterns in pulmonary tuberculosis patients vol.11, pp.16, 2011, https://doi.org/10.2217/epi-2018-0142
  35. Upregulation of miR-552 Predicts Unfavorable Prognosis of Gastric Cancer and Promotes the Proliferation, Migration, and Invasion of Gastric Cancer Cells vol.43, pp.3, 2020, https://doi.org/10.1159/000505377
  36. FAIM Is Regulated by MiR-206, MiR-1-3p and MiR-133b vol.8, pp.None, 2011, https://doi.org/10.3389/fcell.2020.584606
  37. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-58195-0
  38. Resveratrol Activates Natural Killer Cells through Akt- and mTORC2-Mediated c-Myb Upregulation vol.21, pp.24, 2011, https://doi.org/10.3390/ijms21249575
  39. Fas and microRNAs Variations as a Possible Risk for Behçet Disease vol.27, pp.8, 2011, https://doi.org/10.1097/rhu.0000000000001254
  40. Meta-Analysis of miRNA Variants Associated with Susceptibility to Autoimmune Disease vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9978460
  41. Oleuropin controls miR-194/XIST/PD-L1 loop in triple negative breast cancer: New role of nutri-epigenetics in immune-oncology vol.277, pp.None, 2011, https://doi.org/10.1016/j.lfs.2021.119353