DOI QR코드

DOI QR Code

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao (Public Health Research Institute, University of Medicine and Dentistry of New Jersey) ;
  • Xue, Chaoyang (Public Health Research Institute, University of Medicine and Dentistry of New Jersey)
  • Received : 2011.11.05
  • Accepted : 2011.11.07
  • Published : 2011.12.31

Abstract

The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

Keywords

References

  1. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17:1807-19. https://doi.org/10.1681/ASN.2006010083
  2. Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 2005;6:505-10. https://doi.org/10.1038/nrm1666
  3. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002;82:373-428. https://doi.org/10.1152/physrev.00027.2001
  4. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425-79. https://doi.org/10.1146/annurev.biochem.67.1.425
  5. Spruck CH, Strohmaier HM. Seek and destroy: SCF ubiquitin ligases in mammalian cell cycle control. Cell Cycle 2002;1:250-4.
  6. Mockaitis K, Estelle M. Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 2008;24:55-80. https://doi.org/10.1146/annurev.cellbio.23.090506.123214
  7. Sakamoto KM. Ubiquitin-dependent proteolysis: its role in human diseases and the design of therapeutic strategies. Mol Genet Metab 2002;77:44-56. https://doi.org/10.1016/S1096-7192(02)00146-4
  8. Mitsiades CS, Mitsiades N, Hideshima T, Richardson PG, Anderson KC. Proteasome inhibitors as therapeutics. Essays Biochem 2005;41:205-18.
  9. Bernassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008;14:10-21. https://doi.org/10.1016/j.ccr.2008.06.001
  10. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 2000;10:429-39. https://doi.org/10.1016/S0962-8924(00)01834-1
  11. Patton EE, Willems AR, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet 1998;14:236-43. https://doi.org/10.1016/S0168-9525(98)01473-5
  12. Connelly C, Hieter P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 1996;86:275-85. https://doi.org/10.1016/S0092-8674(00)80099-9
  13. Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG Jr, Elledge SJ, Conaway RC, et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999;284:657-61. https://doi.org/10.1126/science.284.5414.657
  14. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996;86:263-74. https://doi.org/10.1016/S0092-8674(00)80098-7
  15. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 1997;91:221-30. https://doi.org/10.1016/S0092-8674(00)80404-3
  16. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 1997;91:209-19. https://doi.org/10.1016/S0092-8674(00)80403-1
  17. Kaiser P, Flick K, Wittenberg C, Reed SI. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 2000;102:303-14. https://doi.org/10.1016/S0092-8674(00)00036-2
  18. Bastians H, Topper LM, Gorbsky GL, Ruderman JV. Cell cycle-regulated proteolysis of mitotic target proteins. Mol Biol Cell 1999;10:3927-41. https://doi.org/10.1091/mbc.10.11.3927
  19. Michael WM, Newport J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 1998;282:1886-9. https://doi.org/10.1126/science.282.5395.1886
  20. Bai C, Richman R, Elledge SJ. Human cyclin F. EMBO J 1994;13:6087-98.
  21. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 2004;18:2573-80. https://doi.org/10.1101/gad.1255304
  22. Kipreos ET, Pagano M. The F-box protein family. Genome Biol 2000;1:REVIEWS3002.
  23. Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 2004;5:739-51.
  24. Jonkers W, Rep M. Lessons from fungal F-box proteins. Eukaryot Cell 2009;8:677-95. https://doi.org/10.1128/EC.00386-08
  25. Flick JS, Johnston M. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol 1991;11:5101-12. https://doi.org/10.1128/MCB.11.10.5101
  26. Bernard F, Andre B. Ubiquitin and the SCF(Grr1) ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett 2001;496:81-5. https://doi.org/10.1016/S0014-5793(01)02412-7
  27. Blondel M, Galan JM, Peter M. Isolation and characterization of HRT1 using a genetic screen for mutants unable to degrade Gic2p in Saccharomyces cerevisiae. Genetics 2000; 155:1033-44.
  28. Liu TB, Wang Y, Stukes S, Chen Q, Casadevall A, Xue C. The F-Box protein Fbp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. Eukaryot Cell 2011;10:791-802. https://doi.org/10.1128/EC.00004-11
  29. Butler DK, All O, Goffena J, Loveless T, Wilson T, Toenjes KA. The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet Biol 2006;43:573-82. https://doi.org/10.1016/j.fgb.2006.03.004
  30. Atir-Lande A, Gildor T, Kornitzer D. Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol Biol Cell 2005;16:2772-85. https://doi.org/10.1091/mbc.E05-01-0079
  31. Shieh JC, White A, Cheng YC, Rosamond J. Identification and functional characterization of Candida albicans CDC4. J Biomed Sci 2005;12:913-24. https://doi.org/10.1007/s11373-005-9027-9
  32. Li WJ, Wang YM, Zheng XD, Shi QM, Zhang TT, Bai C, Li D, Sang JL, Wang Y. The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans. Mol Microbiol 2006;62:212-26. https://doi.org/10.1111/j.1365-2958.2006.05361.x
  33. Tseng TL, Lai WC, Jian T, Li C, Sun HF, Way TD, Shieh JC. Affinity purification of Candida albicans CaCdc4-associated proteins reveals the presence of novel proteins involved in morphogenesis. Biochem Biophys Res Commun 2010;395:152-7. https://doi.org/10.1016/j.bbrc.2010.03.162
  34. Han YK, Kim MD, Lee SH, Yun SH, Lee YW. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol Microbiol 2007;63:768-79.
  35. Duyvesteijn RG, van Wijk R, Boer Y, Rep M, Cornelissen BJ, Haring MA. Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol Microbiol 2005;57:1051-63. https://doi.org/10.1111/j.1365-2958.2005.04751.x
  36. Jonkers W, Van Kan JA, Tijm P, Lee YW, Tudzynski P, Rep M, Michielse CB. The FRP1 F-box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens. Mol Plant Pathol 2011;12:548-63. https://doi.org/10.1111/j.1364-3703.2010.00689.x
  37. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 1998;11:404-12. https://doi.org/10.1094/MPMI.1998.11.5.404
  38. Silva MC. Signaling pathway in appressorium formation in Magnaporthe grisea [dissertation]. College Station: Texas A&M University; 2004.
  39. Krappmann S, Jung N, Medic B, Busch S, Prade RA, Braus GH. The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol Microbiol 2006;61:76-88. https://doi.org/10.1111/j.1365-2958.2006.05215.x
  40. Natorff R, Piotrowska M, Paszewski A. The Aspergillus nidulans sulphur regulatory gene sconB encodes a protein with WD40 repeats and an F-box. Mol Gen Genet 1998;257:255-63. https://doi.org/10.1007/s004380050646
  41. Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med 2006;145:676-84. https://doi.org/10.7326/0003-4819-145-9-200611070-00010
  42. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006;6:369-81. https://doi.org/10.1038/nrc1881
  43. Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A. E3 ubiquitin ligases and plant innate immunity. J Exp Bot 2009;60:1123-32. https://doi.org/10.1093/jxb/erp059
  44. Kipreos ET. Ubiquitin-mediated pathways in C. elegans. WormBook 2005:1-24.