DOI QR코드

DOI QR Code

Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

  • Goo, Yong-Sook (Department of Physiology, Chungbuk National University School of Medicine) ;
  • Ahn, Kun-No (Department of Physiology, Chungbuk National University School of Medicine) ;
  • Song, Yeong-Jun (Department of Physiology, Chungbuk National University School of Medicine) ;
  • Ahn, Su-Heok (Department of Physics, Chungbuk National University) ;
  • Han, Seung-Kee (Department of Physics, Chungbuk National University) ;
  • Ryu, Sang-Baek (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Kim, Kyung-Hwan (Department of Biomedical Engineering, College of Health Science, Yonsei University)
  • 투고 : 2011.11.02
  • 심사 : 2011.12.09
  • 발행 : 2011.12.30

초록

Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using $8{\times}8$ microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus.

키워드

참고문헌

  1. Chader GJ, Weiland J, Humayun MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res. 2009;175:317-332.
  2. Rizzo JF 3rd. Update on retinal prosthetic research: the Boston Retinal Implant Project. J Neuroophthalmol. 2011;31:160-168. https://doi.org/10.1097/WNO.0b013e31821eb79e
  3. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278:1489-1497. https://doi.org/10.1098/rspb.2010.1747
  4. Farber DB, Flannery JG, Bowes-Rickman C. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Retinal Eye Res. 1994;13:31-64. https://doi.org/10.1016/1350-9462(94)90004-3
  5. LaVail MM, Matthes MT, Yasumura D, Steinberg RH. Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res. 1997;65:45-50. https://doi.org/10.1006/exer.1997.0308
  6. Pierce EA. Pathways to photoreceptor cell death in inherited retinal degenerations. Bioessays. 2001;23:605-618. https://doi.org/10.1002/bies.1086
  7. Chang B, Hawes NL, Pardue MT, German AM, Hurd RE, Davisson MT, Nusinowitz S, Rengarajan K, Boyd AP, Sidney SS, Phillips MJ, Stewart RE, Chaudhury R, Nickerson JM, Heckenlively JR, Boatright JH. Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vision Res. 2007;47:624-633. https://doi.org/10.1016/j.visres.2006.11.020
  8. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest. 2004;114:765-774.
  9. Rex TS, Allocca M, Domenici L, Surace EM, Maguire AM, Lyubarsky A, Cellerino A, Bennett J, Auricchio A. Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration. Mol Ther. 2004;10:855-861. https://doi.org/10.1016/j.ymthe.2004.07.027
  10. Picard E, Jonet L, Sergeant C, Vesvres MH, Behar-Cohen F, Courtois Y, Jeanny JC. Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice. Mol Vis. 2010;16:2612-2625.
  11. Pang JJ, Dai X, Boye SE, Barone I, Boye SL, Mao S, Everhart D, Dinculescu A, Liu L, Umino Y, Lei B, Chang B, Barlow R, Strettoi E, Hauswirth WW. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther. 2011;19:234-242. https://doi.org/10.1038/mt.2010.273
  12. Ye JH, Goo YS. The slow wave component of retinal activity in rd/rd mice recorded with a multi-electrode array. Physiol Meas. 2007;28:1079-1088. https://doi.org/10.1088/0967-3334/28/9/009
  13. Stasheff SF. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol. 2008;99:1408-1421. https://doi.org/10.1152/jn.00144.2007
  14. Margolis DJ, Newkirk G, Euler T, Detwiler PB. Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci. 2008;28:6526-6536. https://doi.org/10.1523/JNEUROSCI.1533-08.2008
  15. Ryu SB, Ye JH, Lee JS, Goo YS, Kim CH, Kim KH. Electrically- evoked neural activities of rd1 mice retinal ganglion cells by repetitive pulse stimulation. Korean J Physiol Pharmacol. 2009;13:443-448. https://doi.org/10.4196/kjpp.2009.13.6.443
  16. Ryu SB, Ye JH, Goo YS, Kim CH, Kim KH. Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains. Invest Ophthalmol Vis Sci. 2010;51:6762-6769. https://doi.org/10.1167/iovs.10-5577
  17. Goo YS, Ye JH, Lee S, Nam Y, Ryu SB, Kim KH. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas. J Neural Eng. 2011;8:035003. https://doi.org/10.1088/1741-2560/8/3/035003
  18. Della Santina L, Bouly M, Asta A, Demontis GC, Cervetto L, Gargini C. Effect of HCN channel inhibition on retinal morphology and function in normal and dystrophic rodents. Invest Ophthalmol Vis Sci. 2010;51:1016-1023. https://doi.org/10.1167/iovs.09-3680
  19. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol. 2007;500:222-238. https://doi.org/10.1002/cne.21144
  20. Munk MH, Neuenschwander S. High-frequency oscillations (20 to 120 Hz) and their role in visual processing. J Clin Neurophysiol. 2000;17:341-360. https://doi.org/10.1097/00004691-200007000-00002
  21. Goo YS, Ahn KN, Song YJ, Ryu SB, Kim KH. Comparison of basal oscillatory rhythm of retinal activities in rd1 and rd10 mice. Conf Proc IEEE Eng Med Biol Soc. 2011;1093-1096.
  22. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E. Electrical multisite stimulation of the isolated chicken retina. Vision Res. 2000;40:1785-1795. https://doi.org/10.1016/S0042-6989(00)00005-5
  23. Hayes MH. Statistical digital signal processing and modeling. 1st ed. New York: John Wiley & Sons; 1996.
  24. Stasheff SF, Shankar M, Andrews MP. Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice. J Neurophysiol. 2011;105:3002-3009. https://doi.org/10.1152/jn.00704.2010
  25. Carter-Dawson LD, LaVail MM, Sidman RL. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci. 1978;17:489-498.
  26. Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci. 2002;22:5492-5504.
  27. Phillips MJ, Otteson DC, Sherry DM. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-2089. https://doi.org/10.1002/cne.22322
  28. Koepsell K, Wang X, Hirsch JA, Sommer FT. Exploring the function of neural oscillations in early sensory systems. Front Neurosci. 2010;4:53.
  29. Arai I, Yamada Y, Asaka T, Tachibana M. Light-evoked oscillatory discharges in retinal ganglion cells are generated by rhythmic synaptic inputs. J Neurophysiol. 2004;92:715-725. https://doi.org/10.1152/jn.00159.2004
  30. Koepsell K, Wang X, Vaingankar V, Wei Y, Wang Q, Rathbun DL, Usrey WM, Hirsch JA, Sommer FT. Retinal oscillations carry visual information to cortex. Front Syst Neurosci. 2009;3:4.

피인용 문헌

  1. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas vol.9, pp.8, 2011, https://doi.org/10.1371/journal.pone.0106047
  2. Origins of spontaneous activity in the degenerating retina vol.9, pp.None, 2011, https://doi.org/10.3389/fncel.2015.00277
  3. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice vol.9, pp.None, 2011, https://doi.org/10.3389/fncel.2015.00330
  4. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation vol.9, pp.None, 2015, https://doi.org/10.3389/fncel.2015.00512
  5. Aberrant Activity in Degenerated Retinas Revealed by Electrical Imaging vol.10, pp.None, 2011, https://doi.org/10.3389/fncel.2016.00025
  6. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model vol.9, pp.None, 2011, https://doi.org/10.3389/fncel.2015.00513
  7. Electrical Stimulation of the Retina to Produce Artificial Vision vol.2, pp.1, 2011, https://doi.org/10.1146/annurev-vision-111815-114425
  8. BioPAC 모듈을 이용한 마우스 시각유발전위 측정 시스템 확립 vol.38, pp.1, 2011, https://doi.org/10.9718/jber.2017.38.1.16
  9. Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor vol.8, pp.1, 2017, https://doi.org/10.1038/s41467-017-01990-7
  10. Clinical Impact of Spontaneous Hyperactivity in Degenerating Retinas: Significance for Diagnosis, Symptoms, and Treatment vol.12, pp.None, 2011, https://doi.org/10.3389/fncel.2018.00298
  11. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type vol.15, pp.3, 2018, https://doi.org/10.1088/1741-2552/aaadc1
  12. Toward a Bidirectional Communication Between Retinal Cells and a Prosthetic Device – A Proof of Concept vol.13, pp.None, 2011, https://doi.org/10.3389/fnins.2019.00367
  13. Photopharmacologic Vision Restoration Reduces Pathological Rhythmic Field Potentials in Blind Mouse Retina vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-49999-w
  14. Neurophysiological and medical considerations for better-performing microelectronic retinal prostheses vol.17, pp.3, 2011, https://doi.org/10.1088/1741-2552/ab8ca9
  15. Residual contrast response in primary visual cortex of rats with inherited retinal degeneration vol.177, pp.None, 2011, https://doi.org/10.1016/j.visres.2020.08.007
  16. Development and in vitro validation of flexible intraretinal probes vol.10, pp.1, 2011, https://doi.org/10.1038/s41598-020-76582-5
  17. Monitoring Visual Cortical Activities During Progressive Retinal Degeneration Using Functional Bioluminescence Imaging vol.15, pp.None, 2011, https://doi.org/10.3389/fnins.2021.750684
  18. Morphological Factors that Underlie Neural Sensitivity to Stimulation in the Retina vol.1, pp.12, 2011, https://doi.org/10.1002/anbr.202100069