Aldose Reductase Inhibition by Luteolin Derivatives from Parasenecio pseudotaimingasa

  • Kim, Hye-Min (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Jeong-Min (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Ki-Ho (Department of Integrative Plant Science, Chung-Ang University) ;
  • Ahn, Young-Hee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Sang-Hyun (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2011.10.06
  • Accepted : 2011.12.10
  • Published : 2011.12.30

Abstract

Effects of the extract and fractions from Parasenecio pseudotaimingasa on rat lens aldose reductase (AR) inhibition have been investigated. Among them, the n-BuOH fraction was exhibited good inhibitory potencies ($IC_{50}$ value 1.42 ${\mu}g/ml$). Phytochemical constituents were isolated from the n-BuOH fraction by open column chromatography. Their structures were elucidated as luteolin-7-O-rutinoside (1) and luteolin-7-Oglucoside (2) on the basis of spectroscopic analysis. Compounds 1 and 2 exhibited strong AR inhibitory activity, with $IC_{50}$ values of 2.37 and 1.05 ${\mu}M$, respectively. This is the first report on the isolation of compounds 1 and 2 from P. pseudotaimingasa. These results suggest that P. pseudotaimingasa could be a useful material in the development of a novel AR inhibitory agent against diabetic complications.

Keywords

References

  1. Agung, N., Kim, M.H., Lee, J.H., Kim, J.D., Lee, K.R., Choi, J.S., Yoo, Y.M., and Park, H.J., Polyphenol analysis and peroxynitrite scavenging effect of the extracts from eight Korean mountainous vegetable. Kor. J. Pharmacogn. 42, 38-45 (2011).
  2. Ahn, Y.H. and Kim, Y.H., Distribution characteristics of native Parasenecio firmus and Parasenecio pseudotaimingasa on floristic region in Korea. Pro. Kor. Soc. Env. Eco. Con. 19, 29-34 (2009).
  3. Beyer-Mears, A. and Cruz, E., Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes 34, 15-21 (1985). https://doi.org/10.2337/diabetes.34.1.15
  4. Chalk, C., Benstead, T.J., and Moore, F., Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev. 4, CD004572 (2007).
  5. Chung, G.Y., Nam, G.H., Park, M.S., and Jeong, H.J., Taxonomic study on the genus Parasenecio (Compositae) of Korea by the morphology and somatic chromosome numbers. Korean J. Plant Res. 19, 323-330 (2006).
  6. Constantino, L., Rastelli, G., Vianello, P., Cignarella, G., and Barlocco, D., Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches. Med. Res. Rev. 19, 3-23 (1999). https://doi.org/10.1002/(SICI)1098-1128(199901)19:1<3::AID-MED2>3.0.CO;2-7
  7. Drel, V.R., Pacher, P., Ali, T.K., Shin, J., Julius, U., El-Remessy, A.B., and Obrosova, I.G., Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int. J. Mol. Med. 21, 667-676 (2008).
  8. Engerman, R.L. and Kern, T.S., Experimental galactosemia produces diabetic-like retinopathy. Diabetes 33, 97-100 (1984). https://doi.org/10.2337/diabetes.33.1.97
  9. Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyata, T., Nakashima, M., Yoshimura, I., Sakamoto, N., and Shigeta, Y., Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy. Diabetes Care 29, 1538-1544 (2006). https://doi.org/10.2337/dc05-2370
  10. Jesus Angel, de la F. and Sonia, M., Aldose reductase inhibitors from natural sources. Nat. Prod. Rep. 20, 243-251 (2003). https://doi.org/10.1039/b204709h
  11. Jin, Y.H. and Ahn, Y.H., Comparison of ecological characteristics of Parasenecio firmus population in Korea and China. J. Environ. Sci. 19, 197-207 (2010). https://doi.org/10.5322/JES.2010.19.2.197
  12. Jung, S.H., Kang, S.S., Shin, K.H., and Kim, Y.S., Inhibitory effects of naturally occurring flavonoids on the rat lens aldose reductase. Nat. Prod. Sci. 10, 35-39 (2004).
  13. Kawanishi, K., Ueda, H., and Moriyasu, M., Aldose reductase inhibitors from the nature. Curr. Med. Chem. 10, 1353-1374 (2003). https://doi.org/10.2174/0929867033457304
  14. Kim, N.M., Kim, J., Chung, H.Y., and Choi, J.S., Isolation of luteolin-7-O-rutinoside and esculetin with potential antioxidant activity from the aerial parts of Artemisia montana. Arch. Pharm. Res. 23, 237-239 (2000). https://doi.org/10.1007/BF02976451
  15. Koyama, H., Taxonomic studieson the tribe Senecioneae of Eastern Asia. II. Enumeration of the species of Eastern Asia., Mem. Fac. Sci. Kyoto Univ., Ser. Biol. 2, 137-183 (1969).
  16. Lee, H.C., Chekar, E.K., and Lim, D.O., The specific plant species and naturalized plants in the area of Naejangsan National Park, Korea. Kor. J. Env. Eco. 25, 267-283 (2011a).
  17. Lee, J.H., Park, A.R., Choi, D.W., Kim, J.D., Kim, J.C., Ahn, J.H., Lee, H.Y., Choe, M., Choi, K.P., Shin, I.C., and Park, H.J., Analysis of chemical compositions and electron-donating ability of 4 Korean wild sannamuls. Korean J. Medicinal Crop Sci. 19, 111-116 (2011b). https://doi.org/10.7783/KJMCS.2011.19.2.111
  18. Lee, S., Han, S., Kim, H.M., Lee, J.M., Mok, S.Y., and Lee, S., Isolation and identification of phytochemical constituents from Taraxacum coreanum. J. Korean Soc. Appl. Biol. Chem. 54, 73-78 (2011c).
  19. Lee, T.B., Coloured Flora of Korea. Hyangmunsa, Seoul. p. 344 (2003).
  20. Lee, Y.M., Kim, N.H., Kim, J.M., Kim, Y.S., Jang, D.S., Kim, J.H., Bae, K.H., and Kim, J.S., Screening of inhibitory effect on aldose reductase of Korean herbal medicines and preventive effect of Catalpa bignonioides against xylose-induced lens opacity. Kor. J. Pharmacogn. 39, 165-173 (2008).
  21. Lee, Y.N., New Flora of Korea. Kyohak Publishing Co. Ltd., Seoul. p. 314-315 (2006).
  22. Matsumoto, T., Ono, Y., Kurono, M. Kuromiya, A., Nakamura, K., and Bril, V., Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J. Pharmacol. Sci. 107, 231-237 (2008). https://doi.org/10.1254/jphs.08061FP
  23. Mukinda, J.T., Syce, J.A., Fisher, D., and Meyer, M., Effect of the plant matrix on the uptake of luteolin derivatives-containing Artemisia afra aqueous-extract in Caco-2 cells. J. Ethnopharmacol. 130, 439-449 (2010). https://doi.org/10.1016/j.jep.2010.05.058
  24. Park, H.J., Nugroho, A., Lee, J., Kim, J.D., Kim, W.B., Lee, K.R., and Choi, J.S., HPLC analysis of caffeoylquinic acids in the extract of Cacalia firma and peroxynitrite scavenging effect. Kor. J. Pharmacogn. 40, 365-369 (2009).
  25. Sato, S. and Kador, P.F., Inhibition of aldehyde reductase by aldose reductase inhibitors. Biochem. Pharmacol. 40, 1033-1042 (1990). https://doi.org/10.1016/0006-2952(90)90490-C
  26. Sousa, A., Ferreira, I.C.F.R., Calhelha, R., Andrade, P.B., Valentao, P., Seabra, R., Estevinho, L., Bento, A., and Pereira, J. A. Phenolics and antimicrobial activity of traditional stoned table olives 'alcaparra'. Bioorg. Med. Chem. 14, 8533-8538 (2006). https://doi.org/10.1016/j.bmc.2006.08.027
  27. Sun, W., Oates, P.J., Coutcher, J.B., Gerhardinger, C., and Lorenzi, M., A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retino pathway. Diabetes 55, 2757-2762 (2006). https://doi.org/10.2337/db06-0138
  28. Tian, Y., Sun, L.M., Liu, X.Q., Li, B., Wang, Q., and Dong, J.X., Anti-HBV active flavones glucosides from Euphorbia humifusa Willd. Fitoterapia 81, 799-802 (2010). https://doi.org/10.1016/j.fitote.2010.04.012
  29. Van Heyningen, R., Formation of polyol by the lens of the rat with sugar cataract. Nature 184, 194-196 (1959).
  30. Ward, J.D., Advance in metabolic disorders (suppl. 2): The polyol pathway in the neuropathy of early diabetes, Academic Press, New York. p. 425 (1973).
  31. Ziegler, D., Polyneuropathy in the diabetic patient-up data on pathogenesis and management. Nephrol. Dial. Transplant. 19, 2170-2175 (2004). https://doi.org/10.1093/ndt/gfh398