DOI QR코드

DOI QR Code

Effect of DHEA on Recovery of Muscle Atrophy Induced by Parkinson' s Disease

  • Choe, Myoung-Ae (College of Nursing, Seoul National University) ;
  • An, Gyeong-Ju (Department of Nursing, Cheongju University) ;
  • Koo, Byung-Soo (Department of Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University) ;
  • Jeon, Song-Hee (Dongguk University Research Institute of Biotechnology)
  • Received : 2011.05.27
  • Accepted : 2001.12.19
  • Published : 2011.12.30

Abstract

Purpose: The purpose of this study was to determine the effect of dehydroepiandrosterone (DHEA) on recovery of muscle atrophy induced by Parkinson's disease. Methods: The rat model was established by direct injection of 6-hydroxydopamine (6-OHDA, 20 ${\mu}g$) into the left striatum using stereotaxic surgery. Rats were divided into two groups; the Parkinson's disease group with vehicle treatment (Vehicle; n=12) or DHEA treatment group (DHEA; n=22). DHEA or vehicle was administrated intraperitoneally daily at a dose of 0.34 mmol/kg for 21 days. At 22-days after DHEA treatment, soleus, plantaris, and striatum were dissected. Results: The DHEA group showed significant increase (p<.01) in the number of tyrosine hydroxylase (TH) positive neurons in the lesioned side substantia nigra compared to the vehicle group. Weights and Type I fiber cross-sectional areas of the contralateral soleus of the DHEA group were significantly greater than those of the vehicle group (p=.02, p=.00). Moreover, extracellular signal-regulated kinase (ERK) phosphorylation significantly decreased in the lesioned striatum, but was recovered with DHEA and also in the contralateral soleus muscle, Akt and ERK phosphorylation recovered significantly and the expression level of myosin heavy chain also recovered by DHEA treatment. Conclusion: Our results suggest that DHEA treatment recovers Parkinson's disease induced contralateral soleus muscle atrophy through Akt and ERK phosphorylation.

Keywords

References

  1. American College of Sports Medicine. (2006). ACSM's advanced exercise physiology. Philadelphia: Lippincott Williams & Wilkins.
  2. Barany, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. Journal of General Physiology, 50, 197-218. https://doi.org/10.1085/jgp.50.6.197
  3. Belanger, N., Gregoire, L., Bedard, P., & Di Paolo, T. (2003). Estradiol and dehydroepiandrosterone potentiate levodopa-induced locomotor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Endocrine, 21, 97-101. https://doi.org/10.1385/ENDO:21:1:97
  4. Bergeron, R., de Montigny, C., & Debonnel, G. (1996). Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: Effects mediated via sigma receptors. Journal of Neuroscience, 16, 1193-1202.
  5. Bigard, X. A., Janmot, C., Merino, D., Lienhard, F., Guezennec, Y. C., & D' Albis, A. (1996). Endurance training affects myosin heavy chain phenotype in regenerating fast-twitch muscle. Journal of Applied Physiology, 81, 2658-2665. https://doi.org/10.1152/jappl.1996.81.6.2658
  6. Brown, G. A., Vukovich, M. D., Sharp, R. L., Reifenrath, T. A., Parsons, K. A., & King, D. S. (1999). Effect of oral DHEA on serum testosterone and adaptations to resistance training in young men. Journal of Applied Physiology, 87, 2274-2283. https://doi.org/10.1152/jappl.1999.87.6.2274
  7. Cano-de-la-Cuerda, R., Perez-de-Heredia, M., Miangolarra-Page, J. C., Munoz-Hellin, E., & Fernandez-de-Las-Penas, C. (2010). Is there muscular weakness in Parkinson's disease? American Journal of Physical Medicine & Rehabilitation, 89, 70-76. https://doi.org/10.1097/PHM.0b013e3181a9ed9b
  8. Choe, M. A., & An, G. J. (2009). Effect of DHEA administration alone or exercise combined with DHEA before steroid treatment on rat hindlimb muscles. Journal of Korean Academy of Nursing, 39, 321-328. https://doi.org/10.4040/jkan.2009.39.3.321
  9. Choe, M. A., An, G. J., Lee, Y. K., Im, J. H., Choi-Kwon, S., & Heitkemper, M. (2004). Effect of inactivity and undernutrition after acute ischemic stroke in a rat hindlimb muscle model. Nursing Research, 53, 283-292. https://doi.org/10.1097/00006199-200409000-00001
  10. Cyr, M., Calon, F., Morissette, M., Grandbois, M., Di Paolo, T., & Callier, S. (2000). Drugs with estrogen-like potency and brain activity: Potential therapeutic application for the CNS. Current Pharmaceutical Design, 6, 1287-1312. https://doi.org/10.2174/1381612003399725
  11. Frimel, T. N., Kapadia, F., Gaidosh, G. S., Li, Y., Walter, G. A., & Vandenborne, K. (2005). A model of muscle atrophy using cast immobilization in mice. Muscle & Nerve, 32, 672-674. https://doi.org/10.1002/mus.20399
  12. Fryburg, D. A., Jahn, L. A., Hill, S. A., Oliveras, D. M., & Barrett, E. J. (1995). Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. Journal of Clinical Investigation, 96, 1722-1729. https://doi.org/10.1172/JCI118217
  13. Garcia-Segura, L. M., Azcoitia, I., & DonCarlos, L. L. (2001). Neuroprotection by estradiol. Progress in Neurobiology, 63, 29-60.
  14. Harris, D. S., Wolkowitz, O. M., & Reus, V. I. (2001). Movement disorder, memory, psychiatric symptoms and serum DHEA levels in schizophrenic and schizoaffective patients. World Journal of Biological Psychiatry, 2, 99-102. https://doi.org/10.3109/15622970109027500
  15. Hornykiewicz, O. (1989). Ageing and neurotoxins as causative factors in idiopathic Parkinson's disease-a critical analysis of the neurochemical evidence. Progress in Neuropsychopharmacology & Biological Psychiatry, 13(3), 19-328.
  16. Kalimi, M., Shafagoj, Y., Loria, R., Padgett, D., & Regelson, W. (1994). Antiglucocorticoid effects of dehydroepiandrosterone (DHEA). Molecular and Cellular Biochemistry, 131, 99-104. https://doi.org/10.1007/BF00925945
  17. Kim, Y., & Choe, M. A. (2010). Effect of decreased locomotor activity on hindlimb muscles in a rat model of Parkinson's disease. Journal of Korean Academy of Nursing, 40, 580-588. https://doi.org/10.4040/jkan.2010.40.4.580
  18. Leskiewicz, M., Regulska, M., Budziszewska, B., Jantas, D., Jaworska-Feil, L., Basta-Kaim, A., et al. (2008). Effects of neurosteroids on hydrogen peroxide- and staurosporine-induced damage of human neuroblastoma SH-SY5Y cells. Journal of Neuroscience Research, 86,1361-1370. https://doi.org/10.1002/jnr.21591
  19. Maninger, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S., & Mellon, S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology, 30, 65-91. https://doi.org/10.1016/j.yfrne.2008.11.002
  20. Mehta, A. K., & Ticku, M. K. (2001). Unsulfated and sulfated neurosteroids differentially modulate the binding characteristics of various radioligands of GABA(A) receptors following chronic ethanol administration. Neuropharmacology, 40, 668-675. https://doi.org/10.1016/S0028-3908(00)00200-8
  21. Mhyre, A. J., & Dorsa, D. M. (2006). Estrogen activates rapid signaling in the brain: Role of estrogen receptor alpha and estrogen receptor beta in neurons and glia. Neuroscience, 138, 851-858. https://doi.org/10.1016/j.neuroscience.2005.10.019
  22. Mitoma, H., Hayashi, R., Yanagisawa, N., & Tsukagoshi, H. (2000). Characteristics of parkinsonian and ataxic gaits: A study using surface electromyograms, angular displacements and floor reaction forces. Journal of Neurological Sciences, 174, 22-39. https://doi.org/10.1016/S0022-510X(99)00329-9
  23. Morales, A. J., Haubrich, R. H., Hwang, J. Y., Asakura, H., & Yen, S. S. (1998). The effect of six months treatment with a 100mg daily dose of DHEA on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Journal of Clinical Endocrinology & Metabolism, 78, 1360-1367.
  24. Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1994). The pathogenesis of gait hypokinesia in Parkinson's disease. Brain, 117, 1169-1181. https://doi.org/10.1093/brain/117.5.1169
  25. Muir, G. D., & Whishaw, I. Q. (1999). Ground reaction forces in locomoting hemi-parkinsonian rats: A definitive test for impairments and compensations. Experimental Brain Research, 126, 307-314. https://doi.org/10.1007/s002210050739
  26. Schwarting, R. K., & Huston, J. P. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in Neurobiology, 50, 275-331. https://doi.org/10.1016/S0301-0082(96)00040-8
  27. Sugino, M., Ohsawa, N., Ito, T., Ishida, S., Yamasaki, H., Kimura, F., Shinoda, K. (1998). A pilot study of dehydroepiandrosterone sulfate in myotonic dystrophy. Neurology, 51, 586-589. https://doi.org/10.1212/WNL.51.2.586
  28. Weill-Engerer, S., David, J. P., Sazdovitch, V., Liere, P., Schumacher, M., Delacourte, A., et al. (2003). In vitro metabolism of dehydroepiandrosterone (DHEA) to 7alpha-hydroxy-DHEA and delta5-androstene-3beta, 17beta-diol in specific regions of the aging brain from Alzheimer's and non-demented patients. Brain Research, 969, 117-125. https://doi.org/10.1016/S0006-8993(03)02288-1
  29. Whishaw, I. Q., Suchowersky, O., Davis, L., Sarna, J., Metz, G. A., & Pellis, S. M. (2002). Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson's disease (PD) reveals homology to deficits in animal models. Behavioural Brain Research, 133, 165-176. https://doi.org/10.1016/S0166-4328(01)00479-X
  30. Yen, S., Morales, A., & Khorram, O. (1995). Replacement of DHEA in aging men and women: Potential remedial effects. Annals of the New York Academy of Sciences, 774, 128-142. https://doi.org/10.1111/j.1749-6632.1995.tb17377.x

Cited by

  1. 항산화제가 시스플라틴에 의해 유발된 쥐의 뒷다리근 위축 경감에 미치는 영향 vol.44, pp.4, 2011, https://doi.org/10.4040/jkan.2014.44.4.371
  2. DHEA Treatment Effects on Redox Environment in Skeletal Muscle of Young and Aged Healthy Rats vol.11, pp.2, 2011, https://doi.org/10.2174/1874609811666180803125723
  3. Expression analysis and single-nucleotide polymorphisms of SYNDIG1L and UNC13C genes associated with thoracic vertebral numbers in sheep (Ovis aries) vol.64, pp.1, 2021, https://doi.org/10.5194/aab-64-131-2021
  4. Probiotic Supplementation Facilitates Recovery of 6-OHDA-Induced Motor Deficit via Improving Mitochondrial Function and Energy Metabolism vol.13, pp.None, 2011, https://doi.org/10.3389/fnagi.2021.668775