DOI QR코드

DOI QR Code

Synthesis of Polyurethane Foam/Organonanoclay/Phosphates Composites and its Characterization

폴리우레탄폼/유기나노점토/포스페이트 복합체의 합성과 그 특성

  • Park, Kyeong-Kyu (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Sang-Ho (Department of Chemical Engineering, Dong-A University)
  • Received : 2011.11.25
  • Accepted : 2011.12.15
  • Published : 2011.12.31

Abstract

We prepared polyurethane foam/cloisite30B/phosphates composites and characterized their rise time, density, cell morphology, and thermal properties. The composites were synthesized with polyadipatediol-cloisite30B composite (f=2.0), polyether-polyol (f=4.6), polymeric 4,4-diphenyl methane diisocyanate (f=2.5), and D-580 (phenyl polyoxyalkenyl phosphate). As a blowing agent, cyclopentane and distilled water were used at various concentrations of D-580 from 0 to 2.81 wt%. The rise times of PUF/Closite30B/Phosphate composites blown with distilled water were faster than those blown with cyclopentane by 30%. The composites blown with cyclopentane had spherical-shape cells and the cell diameter was decreased with increasing D-580 wt%. While $T_g$ of the composites blown with cyclopentane linearly decreased with increasing the D-580 content, the $T_g$ of the composites blown with distilled water increased with the D-580 content. All PUF/Closite30B/Phosphate composites began to decompose from $250^{\circ}C$. The composites blown with cyclopentane showed the second thermal decomposition at temperatures higher than $500^{\circ}C$. The thermal stability of all composites increased with the D-580 content. The effect of D-580 on the thermal stability of the composites was measured higher at the composites blown with distilled water.

유기나노점토와 인화합물을 함유한 우레탄폼 복합체를 합성하고, 폼 생성속도, 밀도, 몰포로지, 열적특성 분석을 수행하였다. 우레탄폼 복합체는 Cloisite 30B가 박리/분산된 폴리아디페이트디올과 폴리에테르-폴리올(f=4.6), PMDI(f=2.5), D-580(phenyl polyoxyalkenyl phosphate)로부터 제조하였다. 발포제로써 cyclopentane과 증류수가 우레탄폼 복합체의 특성에 미치는 영향을 D-580의 농도 0~2.9 wt%에서 측정하였다. 증류수는 cyclopentane 보다 약 30% 빠르게 폼을 형성시켰다. 증류수로 발포한 우레탄폼 복합체의 밀도는 cyclopentane으로 발포한 경우보다 32~34% 낮았다. 증류수로 발포한 우레탄폼 복합체의 cell은 타원형인 반면에, cyclopentane으로 발포한 복합체는 구형의 형상이며, D-580의 함량이 증가함에 따라 cell 직경이 $158{\mu}m$에서 $100{\mu}m$로 감소하였다. Cyclopentane 으로 발포한 우레탄폼 복합체의 $T_g$는 D-580 함량이 증가함에 따라 $77.6^{\circ}C$에서 $56.1^{\circ}C$로 낮아졌다. 증류수로 발포한 우레탄 복합체의 $T_g$는 D-580 함량이 증가함에 따라 높아졌다. Cyclopentane과 증류수로 발포한 우레탄폼 복합체는 모두 $250^{\circ}C$에서 열분해가 시작하였다. Cyclopentane로 발포한 우레탄폼 복합체는 $500^{\circ}C$ 이상에서 열분해속도가 증가하는 2차 열분해 현상이 측정되었다. D-580에 의한 열안정성의 개선 정도는 cyclopentane으로 발포한 복합체에 비하여 증류수로 발포한 우레탄 복합체에서 더 높게 측정되었다.

Keywords

References

  1. Y. J. Kim and B. C. Lee, "Trend in Polyurethane Industry", Polym Sci. Tech., 10, 589 (1999).
  2. S. S. Kim and J. N. Park., "Industrial Application of Polyurethane", Polym Sci. Tech., 10, 614 (1999).
  3. S. H. Kim, M. C. Lee, H. D. Kim, H. C. Park, H. M. Jeong, K. S. Yoon, and B. K. Kim, "Nanoclay Reinforced Rigid Polyurethane Foams", J. Appl. Polym. Sci., 117, 1992 (2010). https://doi.org/10.1002/app.32116
  4. K. N. Park, K. H. Yoon, and D. S. Bang, "Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites", Elastomer, 42, 224 (2007).
  5. J. Xiong, Y. Liu, X. Tang, and X. Wang, "Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on novel reactive modifier", Polym. Degrad. Stability, 86, 549 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.07.001
  6. W. J. Seo, Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee, and W. N. Kim, "Synthesis and Properties of Polyurethane/clay nanocomposites by Clay modified with Polymeric Methane Diisocyanate", J. Appl. Polym. Sci., 101, 2879 (2006). https://doi.org/10.1002/app.23357
  7. W. J. Seo, Y. T. Sung, S. B. Kim, K. H. Choe, J. Y. Sung, and W. N. Kim, "Effects of Ultrasound on the Synthesis and Properties of Polyurethane Foam/Clay Nanocomposites", J. Appl. Polym. Sci., 102, 3764 (2006). https://doi.org/10.1002/app.24735
  8. X. Cao, L. James Lee, T. Widya, and C. Macosko, "Polyurethane/ clay nanocomposites foams: processing, structure and properties", Polymer, 46, 775 (2005). https://doi.org/10.1016/j.polymer.2004.11.028
  9. Y. J. Chung, "Flame Retardant Properties of Polyurethane by the Addition of Phosphorus Compounds", J. Korean Institute of Fire Sci and Eng., 20, 110 (2006).
  10. H. Singh, A. K. Jain, and T. P. Sharma, "Effect of Phosphorus-Nitrogen Additives on fire Retardancy of Rigid Polyurethane Foams", J. Appl. Polym. Sci., 109, 2718 (2008). https://doi.org/10.1002/app.28324
  11. C. B. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, "Flame Retardancy of Novel Phosphorus Flame Retardant for Polyurethane Foam", Appl Chem Eng., 22, 540 (2011).
  12. D. Sophie, B. Michel, B. Serge, D. Rene, C. Giovanni, E. Berend, L. Chiris, R. Toon, and V. Herve, "Mechanism of Fire Retardancy of Polyurethanes Using Ammonium Polyphosphate", J. Appl. Plym. Sci., 82, 3262 (2001). https://doi.org/10.1002/app.2185
  13. K. K. Park, S. W. Shin, M. J. Oh, and S. H. Lee, "Effect of Organo nanoclay and Catalyst on the Polyesterification between Adipic acid and Diethylene Glycol", Elastomers and Composites, 46, 37 (2011).
  14. Technical document for Cloisite 30B (Product Bulletin), Southern Clay Products, Inc, TX, USA.