DOI QR코드

DOI QR Code

자기장 응답 입자의 배향이 자기유변 탄성체의 전달성에 미치는 영향

The Effect of Orientation of Magneto-responsible Particles on the Transmissibility of Magneto-rheological Elastomer

  • 이주환 (수원대학교 신소재공학과) ;
  • 정경호 (수원대학교 신소재공학과) ;
  • 윤지현 (한양대학교 기계공학부) ;
  • 오재응 (한양대학교 기계공학부) ;
  • 김민수 (현대.기아 연구개발본부) ;
  • 양경모 (현대.기아 연구개발본부) ;
  • 이성훈 (현대.기아 연구개발본부)
  • Lee, Joo-Hwan (Department of Polymer Engineering, The University of Suwon) ;
  • Chung, Kyung-Ho (Department of Polymer Engineering, The University of Suwon) ;
  • Yoon, Ji-Hyun (School of Mechanical Engineering, Hanyang University) ;
  • Oh, Jae-Eung (School of Mechanical Engineering, Hanyang University) ;
  • Kim, Min-Soo (Hyundai Kia Motors Research & Development Division) ;
  • Yang, Kyung-Mo (Hyundai Kia Motors Research & Development Division) ;
  • Lee, Seong-Hoon (Hyundai Kia Motors Research & Development Division)
  • 투고 : 2011.10.18
  • 심사 : 2011.11.10
  • 발행 : 2011.12.31

초록

자기장 응답 입자를 효율적으로 배향시킬 수 있는 네오디뮴 자석이 삽입된 몰드가 제시되었다. 입자 배향 공정을 통해 이방성 자기유변 탄성체가 제조되었으며 입자의 최적 첨가량은 30 vol.% 였다. 입자 배향성이 증가할수록 자기유변 탄성체의 인장강도는 감소하고 경도는 증가하였다. FFT 분석기를 통해 측정된 최대 자기유변 특성은 30 vol.%의 자기장 응답 입자를 포함한 자기유변 탄성체에서 나타났으며 인가전류 3 A에서 최대 59%의 전단 모듈러스 변화율을 나타내었다. 또한 인가전류와 자기장 응답 입자의 첨가량이 증가할수록 자기유변 탄성체의 전달성은 감소하였고 흡수 주파수 영역은 증가하여 우수한 댐핑 특성을 나타내었다.

The neodymium magnet inserted mold was proposed to orient magneto-responsible particles efficiently. The anisotropic magneto-rheological elastomer(MRE) was prepared using the new mold and the optimum amounts of the particles was 30 vol.%. As the orientation of particles was increased, the tensile strength of MRE was decreased, while the hardness of MRE was increased. It was found that the MRE containing 30 vol.% of magneto-responsible particles showed the maximum magneto-rheological effect. The ratio of shear modulus shift was 59% at the input current of 3 A. The transmissibility of MRE was decreased with increasing the input current and loading amounts of magneto-responsible particles. Therefore, the damping property of MRE could be improved by preparing the anisotropic MRE.

키워드

참고문헌

  1. H. G. Busmann, B. Giinther, and U. Meyer, "Polymer matrix composites filled with nanoporous metal powders: preparation and electrical properties", Nano Structured Mat., 12, 531 (1999). https://doi.org/10.1016/S0965-9773(99)00176-2
  2. F. D. Goncalves, J. H. Koo, and M. Ahmadian, "A review of the state of the art in magnetorheological fluid technologies- Part 1: MR fluid and MR fluid models", The Shock and Vibration Digest, 38, 203 (2006). https://doi.org/10.1177/0583102406065099
  3. J. D. Carlson and M. R. Jolly, "MR fluid, foam and elastomer devices", Mechatronics, 10, 555 (2000). https://doi.org/10.1016/S0957-4158(99)00064-1
  4. L. C. Davis, "Model of magnetorheological elastomers", J. Appl. Phys., 85, 3348 (1999). https://doi.org/10.1063/1.369682
  5. C. Bellan and G. Bossis, "Field dependence of viscoelastic properties of MR elastomers", Int. J. Modern Phys. B, 16, 2247 (2000).
  6. M. Lokander and B. Stenberg, "Performance of isotropic magnetorheological rubber materals", Polymer Testing, 22, 245 (2003). https://doi.org/10.1016/S0142-9418(02)00043-0
  7. Y. Shen, M. F. Golnaraghi, and G. R. Heppler, "Experimental research and modeling of magnetorheological elastomers", J. Intelligent Material Systems and Structures, 15, 27 (2004). https://doi.org/10.1177/1045389X04039264
  8. K. Chung and K. Yoon, "Basic Study for Development of Magnetorheological Elastomer", Elastomers and Composites, 45, 106 (2010).