DOI QR코드

DOI QR Code

Study on the Solvent Effect in the Coating of Conductive Polythiophene Derivative

용매에 따른 폴리싸이오펜 치환체의 전기전도성에 미치는 영향

  • Pak, Na-Young (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Lee, Seong-Min (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Chung, Dae-Won (EverChemTech Co., Ltd.)
  • 박나영 (수원대학교 공과대학 신소재공학과) ;
  • 이성민 (수원대학교 공과대학 신소재공학과) ;
  • 정대원 ((주)에버켐텍)
  • Received : 2011.09.21
  • Accepted : 2011.11.28
  • Published : 2011.12.31

Abstract

The surface resistance of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT/PSS), which has appeared to be one of the most successful conductive polymers, is affected by the solvent. In this paper, pellet-type PEDOT/PSS was suspended in $H_2O$, ethanol (EtOH), ethylene glycol (EG) or dimethylsulfoxide (DMSO), and coated on PET film. The surface resistances of the films made from EG or DMSO suspension were observed to be lower, nearly by 2 orders of magnitude, than that made from $H_2O$ suspension. No significant difference among four kinds of films was observed when the thermal properties and chemical structures were investigated by TGA and XPS, respectively. However, particle size of PEDOT/PSS was in the range of $1-3{\mu}m$ in EG or DMSO, on the other hand, less than $0.1{\mu}m$ in $H_2O$. It is considered that the particle size of PEDOT/PSS in the suspension plays an important role for the surface resistance.

전도성 고분자로 주목을 받고 있는 poly(3,4-ethylenedioxythiophene)- polystyrene sulfonate (PEDOT/PSS)는 분산 용매에 따라서 전기적 특성이 변화한다. 본 논문에서는 고형으로 최근 시판되고 있는 PEDOT/PSS를 물, 에탄올 (EtOH), 에틸렌 글리콜 (EG) 및 디메틸설폭사이드 (DMSO)에 분산시킨 용액을 PET 필름 상에 코팅하여 표면 저항을 측정한 결과, EG 및 DMSO를 사용하였을 경우에 약 100배 정도 더 낮은 표면 저항치를 나타내었다. 코팅된 필름의 열적 특성 및 화학적 특성을 TGA 및 XPS로 분석한 결과, 용매에 따른 차이는 발견되지 않았다. 그러나 분산액 자체의 입도를 분석한 결과, EG 및 DMSO 용액에서는 $1-3{\mu}m$ 정도의 입자로 존재하였으나, 물에서는 $0.1{\mu}m$ 이하의 미세 입자로 존재하는 것을 확인할 수 있었다. 전기적 특성의 차이는 분산 상태에서의 PEDOT/PSS 입자 크기에 영향을 받는 것으로 판단된다.

Keywords

References

  1. W. A. Little, "Possibility of Synthesizing an Organic Superconductor", Phys. Rev. A., 134, 1416 (1964). https://doi.org/10.1103/PhysRev.134.A1416
  2. H. Shirakawa, E. Louis, A. McDiarmid, C. Chiang, and A. J. Heeger, "Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x", J. Chem. Soc. Chem. Commun., 578 (1977).
  3. J. H. Hong and K. S. Jang, "Synthesis and Characterization of Soluble Polypyrrole with High Conductivity", J. Korean Ind. Eng. Chem., 18, 234 (2007).
  4. Y. H. Lee, Y. W. Ju, H. R. Jung, Y. I. Huh, and W. J. Lee, "Preparation of Polypyrrole/Sulfonated-SEBS Conducting Composites Through an Inverted Emulsion Pathway", J. Ind. Eng. Chem., 11, 550 (2005).
  5. J. M. Lee and K. H. Lim, "Electrochemical Synthesis of Conducting Polythiophene in an Ultrasonic Field", J. Ind. Eng. Chem., 6, 157 (2000).
  6. H. Munstedt, "Ageing of Electrically Conducting Organic Materials", Polymer, 29, 296 (1988). https://doi.org/10.1016/0032-3861(88)90337-0
  7. F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, and L. Leenders, "PEDOT/PSS: Synthesis, Characterization, Properties and Applications", Synth. Met., 135, 115 (2003).
  8. F. Jonas and J. T. Morrison, "3,4-Polyethylenedioxythiophene (PEDT): Conductive Coatings Technical Applications and Properties", Synth. Met., 85, 1397 (1997). https://doi.org/10.1016/S0379-6779(97)80290-1
  9. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, "Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future", Adv. Mater., 12, 481 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  10. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo. "Enhancement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene)/ Poly(4-styrenesulfonate) by a Change of Solvents", Synth. Met., 126, 311 (2002). https://doi.org/10.1016/S0379-6779(01)00576-8
  11. S. Ashizawa, R. Horikawa, and H. Okuzaki, "Effects of Solvent on Carrier Transport in Poly(3,4-ethylenedioxythiophene)/ Poly(4-styrenesulfonate)", Synth. Met., 153, 5 (2005). https://doi.org/10.1016/j.synthmet.2005.07.214
  12. M. M. Ayad and M. A. Shenashin, "Film Thickness Studies for the Chemically Synthesized Conducting Polyaniline", Eur. Polym. J., 39, 1319 (2003). https://doi.org/10.1016/S0014-3057(03)00033-8
  13. Y. Zhu, S. Xu, L. Jiang, K. Pan, and Y. Dan, "Synthesis and Characterization of Polythiophene/Titanium Dioxide Composites", React. Funct. Polymers, 68, 1492 (2008). https://doi.org/10.1016/j.reactfunctpolym.2008.07.008
  14. G. Greczynski, T. Kugler, and W. R. Salaneck, "Characterization of The PEDOT-PSS System by Means of X-ray and Ultraviolet Photoelectron Spectroscopy", Thin Solid Films, 354, 129 (1999). https://doi.org/10.1016/S0040-6090(99)00422-8
  15. D. Chung and Y. T. Park, "The Study on The Electrically Conductive Properties of Graphite-Nylon6 Composite", J. Korean Ind. Eng. Chem., 11, 239 (2000).