Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals

황산 가수분해 조건이 셀룰로오스 나노크리스탈의 수율, 입도 및 전기화학적 특성에 미치는 영향

  • Ryu, Jae-Ho (Dept. of Forest Sciences, CALS, Seoul National University) ;
  • Youn, Hye-Jung (Dept. of Forest Sciences, CALS, Seoul National University)
  • 류재호 (서울대학교 농업생명과학대학 산림과학부) ;
  • 윤혜정 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2011.11.29
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.

Keywords

References

  1. Sjostrom, E., Wood chemistry fundamentals and applications, Academic Press, New York, p 58 (1981).
  2. Bledzki, A. K., and Gassan, J., Composites reinforced with cellulose based fibres, Pro. Polym. Sci. 24:221-274 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  3. Azizi Samir, M. A. S., Alloin, F., and Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6:612-626 (2005). https://doi.org/10.1021/bm0493685
  4. Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: A review of preparation, properties, applications, Polymers, 2:728-765 (2010). https://doi.org/10.3390/polym2040728
  5. Fink, H.-P., Hoffmann, D., and Philipp, B., Some aspects of lateral chain order in cellulosics from X-ray scattering, Cellulose 2(1):51-70 (1995).
  6. Earl, W. L., and VanderHart, D. L., Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure, Macromolecules 14(3):570-574 (1981). https://doi.org/10.1021/ma50004a023
  7. Ishikawa, A., Okano, T., and Sugiyama, J., Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, $III_{I}$ and $IV_{I}$, Polymer, 38(2):463-468 (1997). https://doi.org/10.1016/S0032-3861(96)00516-2
  8. Fink, H. P., Philipp, B., Paul, D., Serimaa, R., and Paakkari, T., The structure of amorphous cellulose as revealed by wide-angle X-ray scattering, Polymer, 28(8):1265-1270 (1987). https://doi.org/10.1016/0032-3861(87)90435-6
  9. Grigoriew, H., and Chmielewski, A. G., Capabilities of X-ray methods in studies of processes of permeation through dense membranes, J. Membr. Sci., 142(1):87-95 (1998). https://doi.org/10.1016/S0376-7388(97)00311-6
  10. Kono, H., Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., and Takai, M., CP/MAS $^{13}C$ NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS $^{13}C$ NMR spectrum of the native cellulose, J. Am. Chem. Soc., 124(25):7506-7511 (2002). https://doi.org/10.1021/ja010704o
  11. Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P., Crystal structure and hydrogen bonding system in cellulose IR from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc., 125(47):14300-14306 (2003). https://doi.org/10.1021/ja037055w
  12. Nishiyama, Y., Langann, P., and Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose I $\beta$ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc., 124(31):9074-9082 (2002). https://doi.org/10.1021/ja0257319
  13. Agarwal, U. P., Reiner, R. S., and Ralph, S. A., Cellulose I crystallinity determination using FT-Raman spectroscopy: Univariate and multivariate methods, Cellulose 17:721-733 (2010). https://doi.org/10.1007/s10570-010-9420-z
  14. Sakurada, I., and Nukuchina, Y., Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57:651-660 (1962). https://doi.org/10.1002/pol.1962.1205716551
  15. Saeman, J. F., Kineticsof wood saccharification, Ind. Eng. Chem., 37(1):43-52 (1945). https://doi.org/10.1021/ie50421a009
  16. Springer, E. L., Hydrolysis of aspenwood xylan with aqueous solutions of hydrochloric acid, Tappi 49(3): 102-106 (1966).
  17. Daruwalla, E. H., and Shet, R. T., Heterogeneous acid hydrolysis of alpha-cellulose from sudanese cotton, Text. Res. J. 32:942-954 (1962). https://doi.org/10.1177/004051756203201110
  18. Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. G., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol. 14:170-172 (1992). https://doi.org/10.1016/S0141-8130(05)80008-X
  19. Bondeson, D., Mathew, A., Oksman, K., Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 13:171-180 (2006). https://doi.org/10.1007/s10570-006-9061-4
  20. Xiang, Q., Lee, Y. Y., Pettersson, P. O., and Torget, R. W., Heterogeneous aspects of acid hydrolysis of $\alpha$-cellulose, Appl. Biochem. Biotechnol. 105:505-514 (2003).
  21. Bondeson, D., Kvien, I., and Oksman, K., Cellulose Nanocomposites, Oksman, K., and Sain, M. (ed.), American Chemical Society, Washington, DC, p. 22 (2005).
  22. Zhao, H., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., and Holaday, J. E, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydrate polymers 68:235-241 (2007). https://doi.org/10.1016/j.carbpol.2006.12.013
  23. Fleming, K., Gray, D. G., Prasannan, S., and Matthews, S., Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings, J. Am. Chem. Soc. 122(21):5224-5225 (2000). https://doi.org/10.1021/ja000764e
  24. Araki, J., Wada, M., Kuga, S., Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and surfaces A, 142(1):75-82 (1998). https://doi.org/10.1016/S0927-7757(98)00404-X
  25. Habibi, Y., Lucia, L. A., Rojas, O. J., Cellulose nanocrystals: Chemistry, self-assembly, and applicaitions, Chem. Rew. 110:3479-3500 (2010). https://doi.org/10.1021/cr900339w