References
- Sjostrom, E., Wood chemistry fundamentals and applications, Academic Press, New York, p 58 (1981).
- Bledzki, A. K., and Gassan, J., Composites reinforced with cellulose based fibres, Pro. Polym. Sci. 24:221-274 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
- Azizi Samir, M. A. S., Alloin, F., and Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6:612-626 (2005). https://doi.org/10.1021/bm0493685
- Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: A review of preparation, properties, applications, Polymers, 2:728-765 (2010). https://doi.org/10.3390/polym2040728
- Fink, H.-P., Hoffmann, D., and Philipp, B., Some aspects of lateral chain order in cellulosics from X-ray scattering, Cellulose 2(1):51-70 (1995).
- Earl, W. L., and VanderHart, D. L., Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure, Macromolecules 14(3):570-574 (1981). https://doi.org/10.1021/ma50004a023
-
Ishikawa, A., Okano, T., and Sugiyama, J., Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II,
$III_{I}$ and$IV_{I}$ , Polymer, 38(2):463-468 (1997). https://doi.org/10.1016/S0032-3861(96)00516-2 - Fink, H. P., Philipp, B., Paul, D., Serimaa, R., and Paakkari, T., The structure of amorphous cellulose as revealed by wide-angle X-ray scattering, Polymer, 28(8):1265-1270 (1987). https://doi.org/10.1016/0032-3861(87)90435-6
- Grigoriew, H., and Chmielewski, A. G., Capabilities of X-ray methods in studies of processes of permeation through dense membranes, J. Membr. Sci., 142(1):87-95 (1998). https://doi.org/10.1016/S0376-7388(97)00311-6
-
Kono, H., Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., and Takai, M., CP/MAS
$^{13}C$ NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS$^{13}C$ NMR spectrum of the native cellulose, J. Am. Chem. Soc., 124(25):7506-7511 (2002). https://doi.org/10.1021/ja010704o - Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P., Crystal structure and hydrogen bonding system in cellulose IR from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc., 125(47):14300-14306 (2003). https://doi.org/10.1021/ja037055w
-
Nishiyama, Y., Langann, P., and Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose I
$\beta$ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc., 124(31):9074-9082 (2002). https://doi.org/10.1021/ja0257319 - Agarwal, U. P., Reiner, R. S., and Ralph, S. A., Cellulose I crystallinity determination using FT-Raman spectroscopy: Univariate and multivariate methods, Cellulose 17:721-733 (2010). https://doi.org/10.1007/s10570-010-9420-z
- Sakurada, I., and Nukuchina, Y., Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57:651-660 (1962). https://doi.org/10.1002/pol.1962.1205716551
- Saeman, J. F., Kineticsof wood saccharification, Ind. Eng. Chem., 37(1):43-52 (1945). https://doi.org/10.1021/ie50421a009
- Springer, E. L., Hydrolysis of aspenwood xylan with aqueous solutions of hydrochloric acid, Tappi 49(3): 102-106 (1966).
- Daruwalla, E. H., and Shet, R. T., Heterogeneous acid hydrolysis of alpha-cellulose from sudanese cotton, Text. Res. J. 32:942-954 (1962). https://doi.org/10.1177/004051756203201110
- Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. G., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol. 14:170-172 (1992). https://doi.org/10.1016/S0141-8130(05)80008-X
- Bondeson, D., Mathew, A., Oksman, K., Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 13:171-180 (2006). https://doi.org/10.1007/s10570-006-9061-4
-
Xiang, Q., Lee, Y. Y., Pettersson, P. O., and Torget, R. W., Heterogeneous aspects of acid hydrolysis of
$\alpha$ -cellulose, Appl. Biochem. Biotechnol. 105:505-514 (2003). - Bondeson, D., Kvien, I., and Oksman, K., Cellulose Nanocomposites, Oksman, K., and Sain, M. (ed.), American Chemical Society, Washington, DC, p. 22 (2005).
- Zhao, H., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., and Holaday, J. E, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydrate polymers 68:235-241 (2007). https://doi.org/10.1016/j.carbpol.2006.12.013
- Fleming, K., Gray, D. G., Prasannan, S., and Matthews, S., Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings, J. Am. Chem. Soc. 122(21):5224-5225 (2000). https://doi.org/10.1021/ja000764e
- Araki, J., Wada, M., Kuga, S., Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and surfaces A, 142(1):75-82 (1998). https://doi.org/10.1016/S0927-7757(98)00404-X
- Habibi, Y., Lucia, L. A., Rojas, O. J., Cellulose nanocrystals: Chemistry, self-assembly, and applicaitions, Chem. Rew. 110:3479-3500 (2010). https://doi.org/10.1021/cr900339w