참고문헌
- Alex, S., Savoie, R., Corbeil, M.-C., and Beauchamp, A.L., 1986, Complexation of glycylglycine by methylmercury cation: a vibrational spectroscopy and X-ray diffraction study, Can. J. Chem., 64, 148-157. https://doi.org/10.1139/v86-026
- Al-Reasi, H.A., Wood, C.M., and Smith, D.S., 2011, Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota, Aquat. Toxicol., 103, 179-190. https://doi.org/10.1016/j.aquatox.2011.02.015
- Amirbahman, A., Reid, A.L. Haines, T.A., Kahl, J.S., and Arnold, C., 2002, Association of methylmercury with dissolved humic acids, Environ. Sci. Technol., 36, 690-695. https://doi.org/10.1021/es011044q
- Barkay, T., Gillman, M., and Turner, R.R., 1997, Effects of dissolved organic carbon and salinity on bioavailability of mercury, Appl. Environ. Microbiol., 63, 4267-4271.
- Beauchamp, A.L. and Goutier, D., 1971, Structure cristalline et moleculaire du thiocyanate mercurique, Can. J. Chem., 50, 977- 981.
- Bouldin, C., Furenlid, L., and Elam, T., 1995, MacXAFS: An EXAFS analysis package for the Macintosh, Physica B., 208 and 209, 190-192. https://doi.org/10.1016/0921-4526(94)01012-P
- Brese, N.E. and O'Keeffe, M., 1991, Bond-valence parameters for solids, Acta Cryst., B47, 192-197.
- Brown, I.D., 1981, The bond-valence method: an empirical approach to chemical structure and bonding. In M. O'Keeffe and A. Navrotsky (ed.), Structure and Bonding in Crystals, vol. 2., Academic Press, New York, pp. 1-30.
- Corbeil, M.-C. and Beauchamp, A.L., 1988, Methylmercury(II) complexes with tryptophan and its N-acetyl derivative, Can. J. Chem., 66, 2458-2464. https://doi.org/10.1139/v88-387
- Fairhurst, M.T. and Rabenstein, D.L., 1975, Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XII. Binding of methylmercury by methionine, Inorg. Chem., 14, 1413-1415. https://doi.org/10.1021/ic50148a043
- Gilmour, C.C. and Henry, E.A., 1991, Mercury methylation in aquatic systems affected by acid deposition, Environ. Pollut., 71, 131-169. https://doi.org/10.1016/0269-7491(91)90031-Q
- Hesterberg, D., Chou, J.W., Hutchison, K.J., and Sayers, D.E., 2001, Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio, Environ. Sci. Technol., 35, 2741-2745. https://doi.org/10.1021/es001960o
- Hintelmann, H., Welbourn, P.M., and Evans, R.D., 1995, Binding of methylmercury compounds by humic and fulvic acids, Water Air Soil Pollut., 80, 1031-1034. https://doi.org/10.1007/BF01189760
- Hintelmann, H., Welbourn, P.M., and Evans, R.D., 1997, Measurement of complexation of methylmercury(II) compounds by freshwater humic substances using equilibrium dialysis, Environ. Sci. Technol., 31, 489-495. https://doi.org/10.1021/es960318k
- Holloway, C.E. and Melník, M., 1995, Mercury organometallic compounds. Classification and analysis of crystallographic and structural data, J. Organometal. Chem., 495, 1-31. https://doi.org/10.1016/0022-328X(95)05395-6
- Kelly, C.A., Rudd, J. W.M., and Holoka, M.H., 2003, Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling, Environ. Sci. Technol., 37, 2941-2946. https://doi.org/10.1021/es026366o
- Khwaja, A.R., Bloom, P.R., and Brezonik, P.L., 2010, Binding strength of methylmercury to aquatic NOM, Environ. Sci. Technol., 44, 6151-6156. https://doi.org/10.1021/es101088k
- Libich, S. and Rabenstein, D.L., 1973, Nuclear magnetic resonance studies of the solution chemistry of metal complexes. Determination of formation constants of methylmercury complexes of selected carboxylic acids, Anal. Chem., 45, 118-124. https://doi.org/10.1021/ac60323a027
- Lytle, F.W., Greegor, R.B., Sandstrom, D.R., Marques, E.C., Wong, J., Spiro, C.L., Huffman, G.P., and Huggins, F.E., 1984, Measurement of soft X-ray absorption spectra with a fluorescent ion chamber detector, Nucl. Instrum. Meth. Phys. Res. A., 226, 542-548. https://doi.org/10.1016/0168-9002(84)90077-9
- Matilainen, T. and Verta, M., 1995, Mercury methylation and demethylation in aerobic surface waters, Can. J. Fish. Aquat. Sci., 52, 1597-1608. https://doi.org/10.1139/f95-753
- Miskimmin, B.M., Rudd, J.W.M., and Kelly, C.A., 1992, Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water, Can. J. Fish. Aquat. Sci., 49, 17-22.
- Nagy, K.L., Manceau, A., Gasper, J.D., Ryan, J.N., and Aiken, G.R., 2011, Metallothionein-like multinuclear clusters of mercury( II) and sulfur in peat, Environ. Sci. Technol., 45, 7298- 7306. https://doi.org/10.1021/es201025v
- Pearson, R.G., 1967, Hard and soft acids and bases. Chem. Brit., 3, 103-107.
- Porvari, P. and Verta, M, 1995, Methylmercury production in flooded soils: A laboratory study, Water Air Soil Pollut., 80, 765-773. https://doi.org/10.1007/BF01189728
- Qian, J., Skyllberg, U., Tu, Q., Bleam, W.F., and Frech, W., 2000, Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils, Fresenius J. Anal. Chem., 367, 467-473. https://doi.org/10.1007/s002160000364
- Qian, J., Skyllberg, U., Frech, W., Bleam, W.F., Bloom, P.R., and Petit, P.E., 2002, Bonding of methyl mercury to reduced sulfur groups in soil and stream organic matter as determined by Xray absorption spectroscopy and binding affinity studies, Geochim. Cosmochim. Acta, 66, 3873-3885. https://doi.org/10.1016/S0016-7037(02)00974-2
- Rabenstein, D.L., 1978, The aqueous solution chemistry of methylmercury and its complexes, Account. Chem. Res., 11, 100-107. https://doi.org/10.1021/ar50123a004
- Rabenstein, D.L. and Fairhurst, M.T., 1975, Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XI. The binding of methylmercury by sulfhydryl-containing amino acids and by glutathione, J. Am. Chem. Soc., 97, 2086- 2092. https://doi.org/10.1021/ja00841a015
- Rabenstein, D.L., Ozubko, R., Libich, S., Evans, C.A., Fairhurst, M.T., and Suvanprakorn, C., 1974, Nuclear magnetic resonance studies of the solution chemistry of metal complexes. X. Determination of formation constants of the methylmercury complexes of selected amines and aminocarboxylic acids, J. Coord. Chem., 3, 263-271. https://doi.org/10.1080/00958977408075860
- Ravichandran, M., 2004, Interactions between mercury and dissolved organic matter-a review, Chemosphere, 55, 319-331. https://doi.org/10.1016/j.chemosphere.2003.11.011
- Rehr, J.J., Mustre de Leon, J., Zabinsky, S.I., and Albers, R.C., 1991, Theoretical X-ray absorption fine structure standards, J. Am. Chem. Soc., 113, 5135-5140. https://doi.org/10.1021/ja00014a001
- Skyllberg, U., Xia, K., Bloom, P.R., Nater, E.A., and Bleam, W.F., 2000, Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects, J. Environ. Qual., 29, 855-865.
- Tipping, E., 2007, Modelling the interactions of Hg(II) and methylmercury with humic substances using WHAM/Model VI, Appl. Geochem., 22, 1624-1635. https://doi.org/10.1016/j.apgeochem.2007.03.021
- Weber J.H., 1993, Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment, Chemosphere, 26, 2063-2077. https://doi.org/10.1016/0045-6535(93)90032-Z
- Yao, A., Qui, R., Qing, C., Mu, S., and Reardon, E.J., 2011, Effects of humus on the environmental activity of mineralbound Hg: influence on Hg plant uptake, J. Soils Sediments, 11, 959-967. https://doi.org/10.1007/s11368-011-0370-3
-
Yoon, S., Diener, L.M., Bloom, P.R., Nater, E.A., and Bleam, W.F., 2005, X-ray absorption studies of
$CH_3Hg^+$ -binding sites in humic substances, Geochim. Cosmochim. Acta, 69, 1111-1121. https://doi.org/10.1016/j.gca.2004.07.036 - Xia, K., Skyllberg, U.L., Bleam, W.F., Bloom, P.R., Nater, E.A. and Helmke, P.A., 1999, X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances, Environ. Sci. Technol., 33, 257-261. https://doi.org/10.1021/es980433q