References
- Abdelouas, A., Lu, Y., Lutze, W., and Nuttall, H.E., 1998, Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water, J. Contamin. Hydrol., 35, 217-233. https://doi.org/10.1016/S0169-7722(98)00134-X
- Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M., 2008a, Biogenic uraninite nanoparticles and their importance for uranium remediation, Elements, 4, 407-412. https://doi.org/10.2113/gselements.4.6.407
-
Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M., 2008b, Coupled biogeochemical processes governing the stability of bacteriogenic
$UO_2$ : molecular to meter scales, 3rd Annual DOE-ERSP PI Meeting, Lansdowne, Virginia. - Beveridge, T.J., 1989, Role of cellular design in bacterial metal accumulation and mineralization, Ann. Rev. Microbiol., 43, 147- 171. https://doi.org/10.1146/annurev.mi.43.100189.001051
- Bonneville, S., Cappellen, P.V., and Behrends, T., 2004, Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability, Chem. Geol., 212, 255-268. https://doi.org/10.1016/j.chemgeo.2004.08.015
- Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., and Fendorf, S., 2003, Inhibition of bacterial U(VI) reduction by calcium, Environ. Sci. Technol., 37, 1850-1858. https://doi.org/10.1021/es0323603
- Burgos, W.D., McDonough, J.T., Senko, J.M., Zhang, G., Dohnalkova, A.C., Kelly, S.D., Gorby, Y., and Kemner, K.M., 2008, Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta, 72, 4901-4915. https://doi.org/10.1016/j.gca.2008.07.016
- Burns, P.C., 1999, The Crystal chemistry of uranium, In: P.C. Burns and R. Finch (eds.), Uranium: Mineralogy, Geochemistry and the Environment, Vol. 38: Reviews in Mineralogy. Mineralogical Society of America.
- Cochran, J.K., Carey, A.E., Sholkovitz, E.R., and Surprenant, L.D., 1986, The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters, Geochim. Cosmochim. Acta, 50, 663-680. https://doi.org/10.1016/0016-7037(86)90344-3
- Dong, H., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., and Onstott, T.C., 2000, Mineral transformations associated with the microbial reduction of magnetite, Chem. Geol., 169, 299-318. https://doi.org/10.1016/S0009-2541(00)00210-2
- Ehrlich, H.L., 1990, Geomicrobiology, 2th ed., Marcel Dekker, New York, 646 p.
- Fein, J.B., Daughney, C.J., Yee, N., and Davis, T.A., 1997, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim. Cosmochim. Acta, 61, 3319-3328. https://doi.org/10.1016/S0016-7037(97)00166-X
- Ferris, F.G., Fratton, C.M., Gerits, J.P., Schultze-Lam, S., and Sherwood-Lollar, B., 1995, Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near rock Creek, British Columbia, Canada, Geomicrobiol. J., 13, 57-67. https://doi.org/10.1080/01490459509378004
- Fowle, D.A. and Fein, J.B., 2000, Experimental measurements of the reversibility of metal-bacteria adsorption reactions, Chem. Geol., 168, 27-36. https://doi.org/10.1016/S0009-2541(00)00188-1
- Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.M.W., and Krupka, K.M., 2000, Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochim. Cosmochim. Acta, 64, 3085-3098. https://doi.org/10.1016/S0016-7037(00)00397-5
- Haas, J.R., Dichristina, T.J., and Wade, R., 2001, Thermodynamics of U(VI) sorption onto Shewanella putrefaciens, Chem. Geol., 180, 33-54. https://doi.org/10.1016/S0009-2541(01)00304-7
- Ilton, E.S., Haiduc, A., Moses, C.O., Heald, S.M., Elbert, D.C., and Veblen, D.R., 2004, Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls, Geochim. Cosmochim. Acta, 68, 2417-2435. https://doi.org/10.1016/j.gca.2003.08.010
- Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J., and White, D.C., 2004, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38, 468-475. https://doi.org/10.1021/es034639p
- Janeczek, J. and Ewing, R.C., 1992, Structural formula of uraninite, J. Nucl. Mater., 190, 128-132. https://doi.org/10.1016/0022-3115(92)90082-V
- Kawano, M. and Tomita, K., 2001, Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation, Am. Mineral., 86, 400- 410. https://doi.org/10.2138/am-2001-0403
- Komlos, J., Peacock, A., Kukkadapu, R.K., and Jaffe, P.R., 2008, Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions, Geochim. Cosmochim. Acta, 72, 3603-3615. https://doi.org/10.1016/j.gca.2008.05.040
- Konhauser, K.O., 1998, Diversity of bacterial iron mineralization, Earth Sci. Rev., 43, 91-121. https://doi.org/10.1016/S0012-8252(97)00036-6
- Kostka, J.E. and Nealson, K.H., 1995, Dissolution and reduction of magnetite by bacteria, Environ. Sci. Technol., 29, 2535- 2540. https://doi.org/10.1021/es00010a012
- Lee, S.Y., Baik, M.H., Lee, Y.J., and Lee, Y.B., 2009, Adsorption of U(VI) ions on biotite from aqueous solutions, Appl. Clay Sci., 46, 255-259. https://doi.org/10.1016/j.clay.2009.08.013
-
Lee, S.Y., Baik, M.H., and Choi, J.W., 2010, Biogenic formation and growth of uraninite (
$UO_2$ ), Environ. Sci. Technol., 44, 8409-8414. https://doi.org/10.1021/es101905m - Liger, E., Charlet, L., and Van Cappellen, P., 1999, Surface catalysis of uranium(VI) reduction by iron(II), Geochim. Cosmochim. Acta, 63, 2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
- Liu, C., Zachara, J.M., Gorby, Y.A., Szecsody, J.E., and Brown, C.F., 2001, Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32, Environ. Sci. Technol., 35, 1385-1393. https://doi.org/10.1021/es0015139
- Lloyd, J.R., Renshaw, J.C., May, I., Livens, F.R., Burke, I.T., Mortimerc, R.J.G., and Morris, K., 2005, Biotransformation of radioactive waste: Microbial reduction of actinides and fission products, J. Nucl. Radiochem. Sci., 6, 17-20. https://doi.org/10.14494/jnrs2000.6.17
- Lovley, D.R., 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 55, 259-287.
- Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., and Landa, E.R., 1991, Microbial reduction of uranium, Nature, 350, 413-416. https://doi.org/10.1038/350413a0
- Nealson, K. and Saffarini, D., 1994, Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation, Ann. Rev. Microbiol., 48, 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
- Payne, R.B., Casalot, L., Rivere, T., Terry, J.H., Larsen, L., Giles, B.J., and Wall, J.D., 2004, Interaction between uranium and the cytochrome c3 of Desulfovibrio desulfuricans strain G20, Arch. Microbiol., 181, 398-406. https://doi.org/10.1007/s00203-004-0671-7
- Roden, E.E. and Zachara, J.M., 1996, Microbial reduction of crystalline Fe(III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci. Technol., 30, 1618-1628. https://doi.org/10.1021/es9506216
- Roh, Y., Chon, C.M., and Moon, J.W., 2007, Metal reduction and biomineralization by an alkaliphilic metal-reducing bacterium, Alkaliphilus metalliredigens (QYMF), Geosci. J., 11, 415- 423. https://doi.org/10.1007/BF02857056
- Schwertmann, U. and Cornell, R.M., 2000, Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed., Wiley- VCH Verlag GmbH, Weinheim, 188 p.
- Truex, M.J., Peyton, B.M., Valentine, N.B., and Gorby, Y.A., 1997, Kinetics of U(VI) reduction by a dissimilatory Fe(III)- reducing bacterium under non-growth conditions, Biotechnol. Bioeng., 555, 490-496.
- Urrutia, M.N., Roden, E.E., Fredrickson, J.K., and Zachara, J.M., 1998, Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory ironreducing bacterium Shewanella alga, Geomicrobiol., 15, 269- 291. https://doi.org/10.1080/01490459809378083
- Walker, S.G., Fleming, C.A., Ferris, F.G., Beveridge, T.J., and Bailey, G.W., 1989, Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution, Appl. Environ. Microbiol., 55, 2976-2984.
- Wall, J.D. and Krumholz, L.R., 2006, Uranium reduction, Ann. Rev. Microbiol., 60, 149-166. https://doi.org/10.1146/annurev.micro.59.030804.121357
- Warren, L.A. and Ferris, F.G., 1998, Continuum between sorption and precipitation of Fe(III) on microbial surfaces, Environ. Sci. Technol., 32, 2331-2337. https://doi.org/10.1021/es9800481
- Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F., and Fendorf, S., 2000, Inhibition of bacterially promoted uranium reduction: Ferric (hyro)oxides as competitive electron acceptors, Environ. Sci. Technol., 34, 2190-2192. https://doi.org/10.1021/es991189l
-
Zachara, J.M., Fredrickson, J.K., Li, S.W., Kennedy, D.W., Smith, S.C., and Gassman, P.L., 1998, Bacterial reduction of crystalline
$Fe^{3+}$ oxides in single phase suspensions and subsurface materials, Am. Mineral., 83, 1426-1443. https://doi.org/10.2138/am-1998-11-1232