DOI QR코드

DOI QR Code

Influence of Iron Phases on Microbial U(VI) Reduction

  • Lee, Seung-Yeop (Division of Radwaste Disposal Research, Korea Atomic Energy Research Institute) ;
  • Baik, Min-Hoon (Division of Radwaste Disposal Research, Korea Atomic Energy Research Institute) ;
  • Lee, Min-Hee (Department of Earth Environmental Geosciences, Pukyong National University) ;
  • Lee, Young-Boo (Jeonju Center, Korea Basic Science Institute) ;
  • Lee, Yong-Jae (Department of Earth System Sciences, Yonsei University)
  • Received : 2011.09.28
  • Accepted : 2011.11.27
  • Published : 2011.12.31

Abstract

The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.

Keywords

References

  1. Abdelouas, A., Lu, Y., Lutze, W., and Nuttall, H.E., 1998, Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water, J. Contamin. Hydrol., 35, 217-233. https://doi.org/10.1016/S0169-7722(98)00134-X
  2. Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M., 2008a, Biogenic uraninite nanoparticles and their importance for uranium remediation, Elements, 4, 407-412. https://doi.org/10.2113/gselements.4.6.407
  3. Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M., 2008b, Coupled biogeochemical processes governing the stability of bacteriogenic $UO_2$: molecular to meter scales, 3rd Annual DOE-ERSP PI Meeting, Lansdowne, Virginia.
  4. Beveridge, T.J., 1989, Role of cellular design in bacterial metal accumulation and mineralization, Ann. Rev. Microbiol., 43, 147- 171. https://doi.org/10.1146/annurev.mi.43.100189.001051
  5. Bonneville, S., Cappellen, P.V., and Behrends, T., 2004, Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability, Chem. Geol., 212, 255-268. https://doi.org/10.1016/j.chemgeo.2004.08.015
  6. Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., and Fendorf, S., 2003, Inhibition of bacterial U(VI) reduction by calcium, Environ. Sci. Technol., 37, 1850-1858. https://doi.org/10.1021/es0323603
  7. Burgos, W.D., McDonough, J.T., Senko, J.M., Zhang, G., Dohnalkova, A.C., Kelly, S.D., Gorby, Y., and Kemner, K.M., 2008, Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta, 72, 4901-4915. https://doi.org/10.1016/j.gca.2008.07.016
  8. Burns, P.C., 1999, The Crystal chemistry of uranium, In: P.C. Burns and R. Finch (eds.), Uranium: Mineralogy, Geochemistry and the Environment, Vol. 38: Reviews in Mineralogy. Mineralogical Society of America.
  9. Cochran, J.K., Carey, A.E., Sholkovitz, E.R., and Surprenant, L.D., 1986, The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters, Geochim. Cosmochim. Acta, 50, 663-680. https://doi.org/10.1016/0016-7037(86)90344-3
  10. Dong, H., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., and Onstott, T.C., 2000, Mineral transformations associated with the microbial reduction of magnetite, Chem. Geol., 169, 299-318. https://doi.org/10.1016/S0009-2541(00)00210-2
  11. Ehrlich, H.L., 1990, Geomicrobiology, 2th ed., Marcel Dekker, New York, 646 p.
  12. Fein, J.B., Daughney, C.J., Yee, N., and Davis, T.A., 1997, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim. Cosmochim. Acta, 61, 3319-3328. https://doi.org/10.1016/S0016-7037(97)00166-X
  13. Ferris, F.G., Fratton, C.M., Gerits, J.P., Schultze-Lam, S., and Sherwood-Lollar, B., 1995, Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near rock Creek, British Columbia, Canada, Geomicrobiol. J., 13, 57-67. https://doi.org/10.1080/01490459509378004
  14. Fowle, D.A. and Fein, J.B., 2000, Experimental measurements of the reversibility of metal-bacteria adsorption reactions, Chem. Geol., 168, 27-36. https://doi.org/10.1016/S0009-2541(00)00188-1
  15. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.M.W., and Krupka, K.M., 2000, Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochim. Cosmochim. Acta, 64, 3085-3098. https://doi.org/10.1016/S0016-7037(00)00397-5
  16. Haas, J.R., Dichristina, T.J., and Wade, R., 2001, Thermodynamics of U(VI) sorption onto Shewanella putrefaciens, Chem. Geol., 180, 33-54. https://doi.org/10.1016/S0009-2541(01)00304-7
  17. Ilton, E.S., Haiduc, A., Moses, C.O., Heald, S.M., Elbert, D.C., and Veblen, D.R., 2004, Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls, Geochim. Cosmochim. Acta, 68, 2417-2435. https://doi.org/10.1016/j.gca.2003.08.010
  18. Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J., and White, D.C., 2004, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38, 468-475. https://doi.org/10.1021/es034639p
  19. Janeczek, J. and Ewing, R.C., 1992, Structural formula of uraninite, J. Nucl. Mater., 190, 128-132. https://doi.org/10.1016/0022-3115(92)90082-V
  20. Kawano, M. and Tomita, K., 2001, Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation, Am. Mineral., 86, 400- 410. https://doi.org/10.2138/am-2001-0403
  21. Komlos, J., Peacock, A., Kukkadapu, R.K., and Jaffe, P.R., 2008, Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions, Geochim. Cosmochim. Acta, 72, 3603-3615. https://doi.org/10.1016/j.gca.2008.05.040
  22. Konhauser, K.O., 1998, Diversity of bacterial iron mineralization, Earth Sci. Rev., 43, 91-121. https://doi.org/10.1016/S0012-8252(97)00036-6
  23. Kostka, J.E. and Nealson, K.H., 1995, Dissolution and reduction of magnetite by bacteria, Environ. Sci. Technol., 29, 2535- 2540. https://doi.org/10.1021/es00010a012
  24. Lee, S.Y., Baik, M.H., Lee, Y.J., and Lee, Y.B., 2009, Adsorption of U(VI) ions on biotite from aqueous solutions, Appl. Clay Sci., 46, 255-259. https://doi.org/10.1016/j.clay.2009.08.013
  25. Lee, S.Y., Baik, M.H., and Choi, J.W., 2010, Biogenic formation and growth of uraninite ($UO_2$), Environ. Sci. Technol., 44, 8409-8414. https://doi.org/10.1021/es101905m
  26. Liger, E., Charlet, L., and Van Cappellen, P., 1999, Surface catalysis of uranium(VI) reduction by iron(II), Geochim. Cosmochim. Acta, 63, 2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
  27. Liu, C., Zachara, J.M., Gorby, Y.A., Szecsody, J.E., and Brown, C.F., 2001, Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32, Environ. Sci. Technol., 35, 1385-1393. https://doi.org/10.1021/es0015139
  28. Lloyd, J.R., Renshaw, J.C., May, I., Livens, F.R., Burke, I.T., Mortimerc, R.J.G., and Morris, K., 2005, Biotransformation of radioactive waste: Microbial reduction of actinides and fission products, J. Nucl. Radiochem. Sci., 6, 17-20. https://doi.org/10.14494/jnrs2000.6.17
  29. Lovley, D.R., 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 55, 259-287.
  30. Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., and Landa, E.R., 1991, Microbial reduction of uranium, Nature, 350, 413-416. https://doi.org/10.1038/350413a0
  31. Nealson, K. and Saffarini, D., 1994, Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation, Ann. Rev. Microbiol., 48, 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
  32. Payne, R.B., Casalot, L., Rivere, T., Terry, J.H., Larsen, L., Giles, B.J., and Wall, J.D., 2004, Interaction between uranium and the cytochrome c3 of Desulfovibrio desulfuricans strain G20, Arch. Microbiol., 181, 398-406. https://doi.org/10.1007/s00203-004-0671-7
  33. Roden, E.E. and Zachara, J.M., 1996, Microbial reduction of crystalline Fe(III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci. Technol., 30, 1618-1628. https://doi.org/10.1021/es9506216
  34. Roh, Y., Chon, C.M., and Moon, J.W., 2007, Metal reduction and biomineralization by an alkaliphilic metal-reducing bacterium, Alkaliphilus metalliredigens (QYMF), Geosci. J., 11, 415- 423. https://doi.org/10.1007/BF02857056
  35. Schwertmann, U. and Cornell, R.M., 2000, Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed., Wiley- VCH Verlag GmbH, Weinheim, 188 p.
  36. Truex, M.J., Peyton, B.M., Valentine, N.B., and Gorby, Y.A., 1997, Kinetics of U(VI) reduction by a dissimilatory Fe(III)- reducing bacterium under non-growth conditions, Biotechnol. Bioeng., 555, 490-496.
  37. Urrutia, M.N., Roden, E.E., Fredrickson, J.K., and Zachara, J.M., 1998, Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory ironreducing bacterium Shewanella alga, Geomicrobiol., 15, 269- 291. https://doi.org/10.1080/01490459809378083
  38. Walker, S.G., Fleming, C.A., Ferris, F.G., Beveridge, T.J., and Bailey, G.W., 1989, Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution, Appl. Environ. Microbiol., 55, 2976-2984.
  39. Wall, J.D. and Krumholz, L.R., 2006, Uranium reduction, Ann. Rev. Microbiol., 60, 149-166. https://doi.org/10.1146/annurev.micro.59.030804.121357
  40. Warren, L.A. and Ferris, F.G., 1998, Continuum between sorption and precipitation of Fe(III) on microbial surfaces, Environ. Sci. Technol., 32, 2331-2337. https://doi.org/10.1021/es9800481
  41. Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F., and Fendorf, S., 2000, Inhibition of bacterially promoted uranium reduction: Ferric (hyro)oxides as competitive electron acceptors, Environ. Sci. Technol., 34, 2190-2192. https://doi.org/10.1021/es991189l
  42. Zachara, J.M., Fredrickson, J.K., Li, S.W., Kennedy, D.W., Smith, S.C., and Gassman, P.L., 1998, Bacterial reduction of crystalline $Fe^{3+}$ oxides in single phase suspensions and subsurface materials, Am. Mineral., 83, 1426-1443. https://doi.org/10.2138/am-1998-11-1232