DOI QR코드

DOI QR Code

Biodegradation of fluorene and bioremediation study by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated soil

PAHs 오염토양에서 분리된 Sphingobacterium sp. KM-02를 이용한 Fluorene 분해 및 토양복원 연구

  • Nam, In-Hyun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Kim, Jae-Gon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
  • 남인현 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 김재곤 (한국지질자원연구원 지구환경연구본부 지질재해연구실)
  • Received : 2011.10.11
  • Accepted : 2011.10.20
  • Published : 2011.10.31

Abstract

The fluorene-degrading strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near a mineimpacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in soil matrix was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil.

Keywords

References

  1. Achten, C. and Hofmann, T., 2009, Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination, Sci. Total Environ., 407, 2461-2473. https://doi.org/10.1016/j.scitotenv.2008.12.008
  2. Alcntara, T., Gmez, J., Pazos, M., and Sanromn, M.A., 2009, PAHs soil decontamination in two steps: Desorption and electrochemical treatment, J. Hazard. Mater., 166, 462-468. https://doi.org/10.1016/j.jhazmat.2008.11.050
  3. Antizar-Ladislao, B., Lopez-Real, J.M., and Beck, A.J., 2006, Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches, J. Hazard. Mater., 137, 1583-1588. https://doi.org/10.1016/j.jhazmat.2006.04.056
  4. Boldrin, B., Tiehm, A., and Fritzsche, C., 1993, Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp., Appl. Environ. Microbiol. 59, 1927-1930.
  5. Casellas, M., Grifoll, M., Bayona, J.M., and Solanas, A.M., 1997, New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101, Appl. Environ. Microbiol., 63, 819-826.
  6. Fortnagel, P., Harms, H., Wittich, R.M., Krohn, S., Meyer, H., Sinnwell, V., Wilkes, H., and Francke, W., 1990, Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27, Appl. Environ. Microbiol., 56, 1148-1156.
  7. Gan, S., Lau, E.V., and Ng, H.K., 2009, Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), J. Hazard. Mater., 172, 532-549. https://doi.org/10.1016/j.jhazmat.2009.07.118
  8. Grifoll, M., Selifonov, S.A., and Chapman, P.J., 1994, Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274, Appl. Environ. Microbiol., 60, 2438-2449.
  9. Grifoll, M., Selifonov, S.A., Gatlin, C.V., and Chapman, P.J., 1995, Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic-compounds, Appl. Environ. Microbiol., 61, 3711-3723.
  10. Haapea, P. and Tuhkanen, T., 2006, Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment, J. Hazard. Mater., 136, 244-250. https://doi.org/10.1016/j.jhazmat.2005.12.033
  11. Keith, L.H. and Telliard, W.A., 1979, Priority pollutants. I. A perspective view, Environ. Sci. Technol., 13, 416-423. https://doi.org/10.1021/es60152a601
  12. Kolomytseva, M.P., Randazzo, D., Baskunov, B.P., Scozzafava, A., Briganti, F., and Golovleva, L.A., 2009, Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469, Bioresour. Technol., 100, 839-844. https://doi.org/10.1016/j.biortech.2008.06.059
  13. Monna, L., Omori, T., and Kodama, T., 1993, Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans Dbf63, Appl. Environ. Microbiol., 59, 285-289.
  14. Mostert, M.M., Ayoko, G.A., and Kokot, S., 2010, Application of chemometrics to analysis of soil pollutants, Trends in Anal. Chem., 29, 430-445. https://doi.org/10.1016/j.trac.2010.02.009
  15. Nam, I.H., Hong, H.B., Kim, Y.M., Kim, B.H., Murugesan, K., and Chang, Y.S., 2005, Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1, Water Res., 39, 4651-4660. https://doi.org/10.1016/j.watres.2005.09.009
  16. Nam, I.H., Kim, Y.M., Murugesan, K., Jeon, J.R., Chang, Y.Y., and Chang, Y.S., 2008, Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst, J. Hazard. Mater., 157, 114-121. https://doi.org/10.1016/j.jhazmat.2007.12.086
  17. Nam, I.H., Kim, Y.M., Schmidt, S., and Chang, Y.S., 2006, Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo- p-dioxin by Sphingomonas wittichii strain RW1, Appl. Environ. Microbiol., 72, 112-116. https://doi.org/10.1128/AEM.72.1.112-116.2006
  18. Nam, K., Rodriguez, W., and Kukor, J.J., 2001, Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction, Chemosphere, 45, 11-20. https://doi.org/10.1016/S0045-6535(01)00051-0
  19. Navarro, R.R., Iimura, Y., Ichikawa, H., and Tatsumi, K., 2008, Treatment of PAHs in contaminated soil by extraction with aqueous DNA followed by biodegradation with a pure culture of Sphingomonas sp., Chemosphere, 73, 1414-1419. https://doi.org/10.1016/j.chemosphere.2008.08.004
  20. Storelli, M.M. and Marcotrigigano, G.O., 2000, Polycyclic aromatic hydrocarbon distributions in sediment from the Mar Piccolo, Ionian Sea, Italy, Bull. Environ. Contam. Toxicol., 65, 537-544. https://doi.org/10.1007/s001280000157
  21. Trenz, S.P., Engesser, K.H., Fischer, P., and Knackmuss, H.J., 1994, Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one, J. Bacteriol., 176, 789-795. https://doi.org/10.1128/jb.176.3.789-795.1994
  22. Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J.R., Renard, M.-E., Springael, D., and Cornelis, G.R., 2001, Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis, Res. Microbiol., 152, 861-872. https://doi.org/10.1016/S0923-2508(01)01269-4
  23. Wilcke, W., 2007, Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil, Geoderma, 141, 157-166. https://doi.org/10.1016/j.geoderma.2007.07.007

Cited by

  1. Heavy Metal Effects on the Biodegradation of Fluorene by Sphingobacterium sp. KM-02 in liquid medium vol.17, pp.6, 2012, https://doi.org/10.7857/JSGE.2012.17.6.082