DOI QR코드

DOI QR Code

Simplified Near Optimal Downlink Beamforming Schemes in Multi-Cell Environment

다중 셀 환경에서 적은 복잡도를 갖는 준 최적 하향 빔형성

  • 양장훈 (한독미디어대학원대학교 뉴미디어학부) ;
  • 김동구 (연세대학교 전기전자공학부)
  • Received : 2010.11.01
  • Accepted : 2011.11.30
  • Published : 2011.12.30

Abstract

Despite enormous performance gain with multi-antenna transmission in the single cell environment, its gain diminishes out in the multi-cell environment due to interference. It is also very hard to solve the efficient downlink beamforming with low complexity in multi-cell environment. First, this paper shows that the asymptotically sum rate optimal downlink beamformings at low and high SNR are maximum ratio transmit (MRT) and zero forcing (ZF) beamforming in the multi-cell system, respectively. Secondly, exploiting the asymptotically optimal downlink beamforming, we develop simple two types of near optimal downlink beamforming schemes having the form of minimum mean squared error (MMSE) beamforming obtained from the dual uplink problem. For each type, three different subclasses are also considered depending on the computational complexity. The simulation results show that the proposed near optimum algorithms provide the trade-off between the complexity and the performance.

다중 안테나 전송은 단일 셀 환경에서 큰 성능 이득을 제공하는 반면에 다중셀 환경에서는 간섭에 의해서 다중 안테나의 이득이 많이 사라지게 된다. 또한, 다중셀 환경에서 효율적인 빔 형성 방법을 계산하는 것은 여전히 어려운 문제중에 하나이다. 먼저 이 논문에서는 다중셀 환경에서 점근적으로 낮은 SNR과 높은 SNR에서 최적의 하향링크 빔행성 방법이 MRT 빔형성과 ZF 빔형성임을 보인다. 둘째, 이 점근적 최적 빔 형성 결과를 이용하여 쌍대 역방향 문제로부터 얻어진 MMSE 빔형성 형태를 갖는 두가지의 준최적 하향 빔형성 방식을 제안한다. 각 빔 형성 방식에 대해서 복잡도에 띠라서 세가지의 다른 부클래스 알고리즘을 고려한다. 모의 실험을 통하여 제안된 준 최적 알고리듬은 복잡도와 성능 사이에 트레이드 오프를 제공함을 보인다.

Keywords

References

  1. E. Telatar, "Capacity of multi-atenna Gaussian channels," AT\&T-Bell Technical Memorandum, 1995..
  2. S. Catreux, P. F. Driessen, and L. J. Greenstein, "`Simulation results for an interference-limited multiple-input multiple- output cellular system," IEEE Commun. Lett., vol.4, pp.334-336, Nov. 2000. https://doi.org/10.1109/4234.892193
  3. H. Zhang and H. Dai, "Cochannel Interference Mitigation and Cooperative Processing in Downlink Multicell Multiuser MIMO Networks," European Journal on Wireless Communications and Networking, 4th quarter 2004.
  4. S. A. Jafar, G. Foschini, A. Goldsmith, PhantomNet: Exploring optimal multicellular multiple antenna systems, EURASIP Journal on Applied Signal Processing, Special Issue on MIMO Communications and Signal Processing, No.5, pp. 591-605, May 2004.
  5. J. G. Andrews, W. Choi, and R. W. Heath, Jr., ``Overcoming Interference in Spatial Multiplexing MIMO Cellular Networks,'' IEEE Wireless Comm. Mag. vol. 14, no. 6, pp.95-104, Dec. 2007. https://doi.org/10.1109/MWC.2007.4407232
  6. Ng B., Evans J, and Hanly S, "Distributed Downlink Beamforming in Cellular Networks, '' IEEE ISIT, France, June. 2007.
  7. Y. Wu, J. Zhang, M. Xu, S. Zhou, and X. Xu, "Multiuser MIMO downlink precoder design based on the maximal SJNR criterion," in Proc. IEEE Globecom, vol. 5, pp.2694-2698, Nov. 2005.
  8. K. Lee, J. Ko, and Y. Lee, "Downlink Beamforming for Other-cell Interference Mitigation in Correlated MISO Channels," European Wireless, France, Apr. 2007.
  9. T. Ren, and R. J. La, "Downlink Beamforming Algorithms with Inter-Cell Interference in Cellular Networks," IEEE Trans. Wireless Comm. vol.5, pp.2814-2822, Oct. 2006 https://doi.org/10.1109/TWC.2006.04580
  10. J. Yang and D. Kim, "Multi-cell Uplink/Downlink Beamforming Throughput Duality based on Lagrangian Duality With Per-Base Station Power Constraint," IEEE Comm. Lett, vol. 12, no. 4, pp. 277-279, Apr. 2008. https://doi.org/10.1109/LCOMM.2008.072065
  11. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. New York: Wiley, 1980.
  12. Gascuel, and G. Caraux, ``Bounds on expectations of order statistics via extremal dependences," Statistics and Probability Letters, vol. 15, pp. 143-148, Sept. 1992. https://doi.org/10.1016/0167-7152(92)90127-Q