DOI QR코드

DOI QR Code

Block-DCT를 이용한 속도 제한 표지판 실시간 인식 알고리듬의 설계

Design of a Real-time Algorithm Using Block-DCT for the Recognition of Speed Limit Signs

  • 한승화 (서강대학교 전자공학과 CAD & ES 연구실) ;
  • 조한민 (서강대학교 전자공학과 CAD & ES 연구실) ;
  • 김광수 (서강대학교 전자공학과 Semiconductor Device 연구실) ;
  • 황선영 (서강대학교 전자공학과 CAD & ES 연구실)
  • 투고 : 2011.10.15
  • 심사 : 2011.12.02
  • 발행 : 2011.12.30

초록

본 논문에서 지능형 안전 자동차 시스템을 위해 연산량를 줄인 속도 제한 표지판 실시간 인식 방법을 제안한다. 제안된 방법은 관심영역의 전체 픽셀 정보를 특징으로 사용한 기존 방법의 큰 연산량을 줄이기 위해 적은 수의 DCT 계수를 선택하고, 격자구조로 분할된 영상에 대해 Block-DCT를 이용하여 산술 연산을 효과적으로 줄였다. 제안된 알고리듬은 연산량을 줄이기 위해 제안된 상관계수와 분산을 이용한 판별식에 따라 DCT 계수를 선택하고 이를 선형 판별법과 Mahalanobis Distance를 이용하여 속도 제한 표지판을 인식한다. 인식 성능을 높이기 위해 연속 프레임의 누적 분류 결과를 사용한다. 실험 결과 연속된 프레임에 대하여 100.0 %의 인식률을 보이며 기존 방식 대비 곱셈 연산량은 69.3 %, 덧셈은 67.9 % 감소를 확인할 수 있었다.

This paper proposes a real-time algorithm for speed limit sign recognition for advanced safety vehicle system. The proposed algorithm uses Block-DCT in extracting features from a given ROI(Region Of Interest) instead of using entire pixel values as in previous works. The proposed algorithm chooses parts of the DCT coefficients according to the proposed discriminant factor, uses correlation coefficients and variances among ROIs from training samples to reduce amount of arithmetic operations without performance degradation in classification process. The algorithm recognizes the speed limit signs using the information obtained during training process by calculating LDA and Mahalanobis Distance. To increase the hit rate of recognition, it uses accumulated classification results computed for a sequence of frames. Experimental results show that the hit rate of recognition for sequential frames reaches up to 100 %. When compared with previous works, numbers of multiply and add operations are reduced by 69.3 % and 67.9 %, respectively. Start after striking space key 2 times.

키워드

참고문헌

  1. 전형호, 문종덕, 박종만, 우창화, "지능형 자동차 분야의 지식경제부 연구개발 지원현황," 한국자동차공학회 오토저널, 제 32권, 제 7호, pp.64-69, 2010년 11월.
  2. 이기용, 송광열, 이준웅, "컴퓨터비전과 지능형 안전자동차," 한국멀티미디어학회지, 제 14권, 1 호, pp.42-49, 2010년 3월.
  3. 양인범, 정도현, "지능형자동차의 기술 로드맵과 연구개발 방향," 한국자동차공학회 심포지엄, pp.74-93, 2005년 8월.
  4. X. Baro, S. Escalera, J. Vitria, O. Pujol, and P. Radeva, "Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest- ECOC Classification," IEEE Trans. Intelligent Transportation Systems, Vol.10, No.1, pp.113- 126, Mar. 2009. https://doi.org/10.1109/TITS.2008.2011702
  5. 경찰청 교통관리관 교통안전과, 2010년판 교통사고통계, 경찰청 교통안전담당관실, 2010 년 8월.
  6. C. Bahlmann, Y. Zhu, R. Visvanathan, M. Pellkofer, and T. Koehler, "A System for Traffic Sign Detection, Tracking, and Recognition Using Color, Shape, and Motion Information," in Proc. IEEE Intelligent Vehicles Symposium 2005, Las Vegas, pp.255-260, June 2005.
  7. 강병휘, 조한민, 김재영, 황선영, 김광수, "DCT 계수를 이용한 속도 제한 표지판 인식 실시간 알고리듬의 설계," 한국통신학회논문지, 제 35권, 12호, pp.1766-1774, 2010년 12월.
  8. H. Akatsuka and S. Imai, "Road Signposts Recognition System." SAE transactions, Vol.96, Issue 1, pp.936-943, Feb., 1987.
  9. S. Buluswar and B. Draper, "Color Recognition in Outdoor Images," in Proc. Sixth International Conf. Computer Vision, pp.171- 177, Jan., 1998.
  10. G. Loy and N. Barnes, "Fast Shape-based Road Sign Detection for a Driver Assistance System." in Proc. IEEE/RSJ International Conf. Intelligent Robots and Systems, Sendai, pp.70-75, Oct., 2004.
  11. Y. Aoyagi and T. Asakura, "A Study on Traffic Sign Recognition in Scene Image Using Genetic Algorithms and Neural Networks," in Proc. IEEE International Conf. Industrial Electronics, Control, and Instrumentation, Taipei, Vol.3, pp.1838-1843, Aug. 1996.
  12. A. de la Escalera, J. Armingol, and M. Mata, "Traffic Sign Recognition and Analysis for Intelligent Vehicles," Image and Vision Computing, Vol.21, Issue 3, pp.247-258, Mar., 2003. https://doi.org/10.1016/S0262-8856(02)00156-7
  13. R. Vicen-Bueno, R. Gil-Pita, M. Rosa-Zurera, M. Utrilla-Manso, and F. Lopez-Ferreras, "Multilayer Perceptrons Applied to Traffic Sign Recognition Tasks," in Proc. Int. Work- Conference on Artificial Neural Networks, Barcelona, Spain, pp.865-872, Jun., 2005.
  14. S. Hsu and C. Huang, "Road Sign Detection and Recognition Using Matching Pursuit Method," Journal of Image and Vision Computing, Vol.19, Issue 3, pp.119-129, Feb., 2001. https://doi.org/10.1016/S0262-8856(00)00050-0
  15. H. M. Yang, C. L. Liu and S. M. Huang, "Traffic Sign Recognition in Disturbing Environments," in Proc. the 14th Int. Symp. Methodologies for Intelligent Systems, Maebashi, Japan, pp.28-31, Oct., 2003.
  16. A. de la Escalera, J. Armingol, J. Pastor, and F. Rodriguez, "Visual Sign Information Extraction and Identification by Deformable Models for Intelligent Vehicles," IEEE Trans. Intelligent Transportation Systems, Vol.5, Issue 2, pp.57-68, Jun., 2004. https://doi.org/10.1109/TITS.2004.828173
  17. S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno, and F. Lopez- Ferreras, "Road-Sign Detection and Recognition Based on Support Vector Machines," IEEE Trans. Intelligent Transportation Systems, Vol.8, Issue 2, pp.264-278, Jun., 2007. https://doi.org/10.1109/TITS.2007.895311
  18. R. Luo, H, David and W. Hislop, "Neural Network Based Landmark Recognition for Robot Navigation," in Proc. Int. Conf. Power Electronics and Motion Control, Industrial Electronics, Control, Instrumentation, and Automation, Vol.2, pp.1084-1088, Nov. 1992.
  19. C. Fang, S. Chen, and C. Fuh, "Road-Sign Detection and Tracking," IEEE Trans. Vehicular Technology, Vol.52, No.5, pp.1329- 1341, Sep., 2003. https://doi.org/10.1109/TVT.2003.810999
  20. M. Meuter, A. Kummert, and S. Muller- Schneiders, "3D Traffic Sign Tracking Using a Particle Filter," 11th International IEEE Conf. Intelligent Transportation Systems, pp.168-173, Oct., 2008.
  21. E. Alpaydin, Introduction to Machine Learning, MIT Press, 2nd edition, 2004.
  22. Y. Lee, T. Chen, and L. Chen, "A Cost-Effective Architecture for 8x8 Two-Dimensional DCT_IDCT Using Direct Method," IEEE Transactions on Circuits and Systems for Video Technology, Vol.7, No.3, pp.459-467, Jun., 1997. https://doi.org/10.1109/76.585925
  23. R. Duda, P. Hart, and G. Stork, Pattern Classification, John Wiley & Sons, INC. 2nd edition, 2001.
  24. J. Cohen, P. Cohen, S. West, and L. Aiken, Applied multiple regression/correlation analysis for the behavioral sciences, Routledge, 3rd edition, 2003.