References
- Menon G. Neonatal long lines. Arch Dis Child Fetal Neonatal Ed 2003; 88:F260-2. https://doi.org/10.1136/fn.88.4.F260
- Hsu JF, Tsai MH, Huang HR, Lien R, Chu SM, Huang CB. Risk factors of catheter-related bloodstream infection with percutaneously inserted central venous catheters in very low birth weight infants: a center's experience in Taiwan. Pediatr Neonatol 2010;51:336-42. https://doi.org/10.1016/S1875-9572(10)60065-4
- Racadio JM, Doellman DA, Johnson ND, Bean JA, Jacobs BR. Pediatric peripherally inserted central catheters: complication rates related to catheter tip location. Pediatrics 2001;107:E28. https://doi.org/10.1542/peds.107.2.e28
- Paulson PR, Miller KM. Neonatal peripherally inserted central catheters: recommendations for prevention of insertion and postinsertion complications. Neonatal Netw 2008;27:245-57. https://doi.org/10.1891/0730-0832.27.4.245
- Moller JC, Reiss I, Schaible T. Vascular access in neonates and infants--indications, routes, techniques and devices, complications. Intensive Care World 1995;12:48-53.
- Schwab F, Geffers C, Barwolff S, Ruden H, Gastmeier P. Reducing neonatal nosocomial bloodstream infections through participation in a national surveillance system. J Hosp Infect 2007;65:319-25. https://doi.org/10.1016/j.jhin.2006.12.020
- Eggimann P, Pittet D. Overview of catheter-related infections with special emphasis on prevention based on educational programs. Clin Microbiol Infect 2002;8:295-309. https://doi.org/10.1046/j.1469-0691.2002.00467.x
- Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40. https://doi.org/10.1016/0196-6553(88)90053-3
- Zingg W, Posfay-Barbe KM, Pfister RE, Touveneau S, Pittet D. Individualized catheter surveillance among neonates: a prospective, 8-year, single-center experience. Infect Control Hosp Epidemiol 2011;32:42-9. https://doi.org/10.1086/657634
- Vaudaux P, Pittet D, Haeberli A, Lerch PG, Morgenthaler JJ, Proctor RA, et al. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis 1993;167:633-41. https://doi.org/10.1093/infdis/167.3.633
- von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 200;2:677-85. https://doi.org/10.1016/S1473-3099(02)00438-3
- Curry S, Honeycutt M, Goins G, Gilliam C. Catheter-associated bloodstream infections in the NICU: getting to zero. Neonatal Netw 2009;28:151-5. https://doi.org/10.1891/0730-0832.28.3.151
- Maki DG. Infections due to infusion therapy. In: Bennett JV, Brachman PS, editors. Hospital infections. 3rd ed. Boston: Little Brown, 1992:849-98.
- Pearson ML. Guideline for prevention of intravascular device-related infections. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1996;17:438-73. https://doi.org/10.1086/647338
- Hoang V, Sills J, Chandler M, Busalani E, Clifton-Koeppel R, Modanlou HD. Percutaneously inserted central catheter for total parenteral nutrition in neonates: complications rates related to upper versus lower extremity insertion. Pediatrics 2008;121:e1152-9. https://doi.org/10.1542/peds.2007-1962
- Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 2002; 110(2 Pt 1):285-91. https://doi.org/10.1542/peds.110.2.285
- de Brito CS, de Brito DV, Abdallah VO, Gontijo Filho PP. Occurrence of bloodstream infection with different types of central vascular catheter in critically neonates. J Infect 2010;60:128-32. https://doi.org/10.1016/j.jinf.2009.11.007
- Edwards JR, Peterson KD, Andrus ML, Tolson JS, Goulding JS, Dudeck MA, et al. National Healthcare Safety Network (NHSN) Report, data summary for 2006, issued June 2007. Am J Infect Control 2007;35:290-301. https://doi.org/10.1016/j.ajic.2007.04.001
- Appelgren P, Ransjo U, Bindslev L, Espersen F, Larm O. Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: results from a prospective, randomized trial. Crit Care Med 1996;24:1482-9. https://doi.org/10.1097/00003246-199609000-00009
- O'Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, et al. Guidelines for the prevention of intravascular catheter-related infections. The Hospital Infection Control Practices Advisory Committee, Center for Disease Control and Prevention, U.S. Pediatrics 2002;110:e51. https://doi.org/10.1542/peds.110.5.e51
- Cho HJ, Choi YH, Shin SS, Oh YJ, Hwang SC. Central venous catheter colonization and bloodstream infection: influence of catheter insertion site and duration. Infect Chemother 2005;37:65-70.
- Pittet D, Hulliger S, Auckenthaler R. Intravascular device-related infections in critically ill patients. J Chemother 1995;7 Suppl 3:55-66.
- Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 2000;21:510-5. https://doi.org/10.1086/501795
- Benjamin DK Jr, Miller W, Garges H, Benjamin DK, McKinney RE Jr, Cotton M, et al. Bacteremia, central catheters, and neonates: when to pull the line. Pediatrics 2001;107:1272-6. https://doi.org/10.1542/peds.107.6.1272
- Kaufman DA. Challenging issues in neonatal candidiasis. Curr Med Res Opin 2010;26:1769-78. https://doi.org/10.1185/03007995.2010.487799
- Taylor T, Massaro A, Williams L, Doering J, McCarter R, He J, et al. Effect of a dedicated percutaneously inserted central catheter team on neonatal catheter-related bloodstream infection. Adv Neonatal Care 2011;11:122-8. https://doi.org/10.1097/ANC.0b013e318210d059
- Schulman J, Stricof R, Stevens TP, Horgan M, Gase K, Holzman IR, et al. Statewide NICU central-line-associated bloodstream infection rates decline after bundles and checklists. Pediatrics 2011;127:436-44. https://doi.org/10.1542/peds.2010-2873
- Matlow AG, Kitai I, Kirpalani H, Chapman NH, Corey M, Perlman M, et al. A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 1999;20:487-93. https://doi.org/10.1086/501657
- Bryant KA, Zerr DM, Huskins WC, Milstone AM. The past, present, and future of healthcare-associated infection prevention in pediatrics: catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 2010;31 Suppl 1:S27-31.
- Linder N, Prince S, Barzilai A, Keller N, Klinger G, Shalit I, et al. Disinfection with 10% povidone-iodine versus 0.5% chlorhexidine gluconate in 70% isopropanol in the neonatal intensive care unit. Acta Paediatr 2004;93:205-10. https://doi.org/10.1111/j.1651-2227.2004.tb00707.x
- Garland JS, Alex CP, Uhing MR, Peterside IE, Rentz A, Harris MC. Pilot trial to compare tolerance of chlorhexidine gluconate to povidone-iodine antisepsis for central venous catheter placement in neonates. J Perinatol 2009;29:808-13. https://doi.org/10.1038/jp.2009.161
- Garland JS, Alex CP, Henrickson KJ, McAuliffe TL, Maki DG. A vancomycin-heparin lock solution for prevention of nosocomial bloodstream infection in critically ill neonates with peripherally inserted central venous catheters: a prospective, randomized trial. Pediatrics 2005; 116:e198-205. https://doi.org/10.1542/peds.2004-2674
- Toltzis P. Antibiotic lock technique to reduce central venous catheter-related bacteremia. Pediatr Infect Dis J 2006;25:449-50. https://doi.org/10.1097/01.inf.0000217264.11288.5a
Cited by
- Reduction of catheter-related bloodstream infections in preterm infants by the use of catheters with the AgION antimicrobial system vol.89, pp.1, 2013, https://doi.org/10.1016/j.earlhumdev.2012.07.003
- Antibiotics Before Removal of Percutaneously Inserted Central Venous Catheters Reduces Clinical Sepsis in Premature Infants vol.20, pp.3, 2011, https://doi.org/10.5863/1551-6776-20.3.203
- Very low birthweight infants face an increased risk of bloodstream infections following the removal of umbilical catheters vol.105, pp.4, 2011, https://doi.org/10.1111/apa.13240
- Outcomes associated with early removal versus retention of peripherally inserted central catheters after diagnosis of catheter-associated infections in neonates vol.29, pp.24, 2011, https://doi.org/10.3109/14767058.2016.1157578
- Outcomes of peripherally inserted double lumen central catheter in very low birth weight infants vol.9, pp.1, 2016, https://doi.org/10.3233/npm-16915054
- In vitro assessment of bacterial colonisation rates of goat umbilical cord segments using three embodiments of a novel neonatal umbilical catheter protection device vol.2, pp.2, 2011, https://doi.org/10.1136/bmjinnov-2015-000101
- The Progress of Diagnosis and Treatment about PICC Related Fungal Infections in NICU Neonates vol.8, pp.10, 2018, https://doi.org/10.12677/acm.2018.810146
- Impact of a rapid molecular test for positive blood cultures from neonatal intensive care patients on clinical management: a retrospective audit vol.187, pp.2, 2011, https://doi.org/10.1007/s11845-017-1649-1
- CLABSI reduction using evidence based interventions and nurse empowerment: a quality improvement initiative from a tertiary care NICU in Pakistan vol.106, pp.4, 2011, https://doi.org/10.1136/archdischild-2019-318779
- Aqueous chlorhexidine 1% versus 2% for neonatal skin antisepsis: a randomised non-inferiority trial vol.106, pp.6, 2021, https://doi.org/10.1136/archdischild-2020-321174