DOI QR코드

DOI QR Code

Hog millet (Panicum miliaceum L.)-supplemented diet ameliorates hyperlipidemia and hepatic lipid accumulation in C57BL/6J-ob/ob mice

  • Park, Mi-Young (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Jang, Hwan-Hee (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Kim, Jung-Bong (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Yoon, Hyun-Nye (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Lee, Jin-Young (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Lee, Young-Min (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Kim, Jae-Hyun (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration) ;
  • Park, Dong-Sik (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration)
  • Received : 2011.07.20
  • Accepted : 2011.12.01
  • Published : 2011.12.31

Abstract

Dietary intake of whole grains reduces the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. In an earlier study, we showed that Panicum miliaceum L. extract (PME) exhibited the highest anti-lipogenic activity in 3T3-L1 cells among extracts of nine different cereal grains tested. In this study, we hypothesized that PME in the diet would lead to weight loss and augmentation of hyperlipidemia by regulating fatty acid metabolism. PME was fed to ob/ob mice at 0%, 0.5%, or 1% (w/w) for 4 weeks. After the experimental period, body weight changes, blood serum and lipid profiles, hepatic fatty acid metabolism-related gene expression, and white adipose tissue (WAT) fatty acid composition were determined. We found that the 1% PME diet, but not the 0.5%, effectively decreased body weight, liver weight, and blood triglyceride and total cholesterol levels (P < 0.05) compared to obese ob/ob mice on a normal diet. Hepatic lipogenic-related gene ($PPAR{\alpha}$, L-FABP, FAS, and SCD1) expression decreased, whereas lipolysis-related gene (CPT1) expression increased in animals fed the 1% PME diet (P < 0.05). Long chain fatty acid content and the ratio of C18:1/C18:0 fatty acids decreased significantly in adipose tissue of animals fed the 1% PME diet (P < 0.05). Serum inflammatory mediators also decreased significantly in animals fed the 1% PME diet compared to those of the ob/ob control group (P < 0.05). These results suggest that PME is useful in the chemoprevention or treatment of obesity and obesity-related disorders.

Keywords

References

  1. Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 2010;45:199-214. https://doi.org/10.3109/10409231003667500
  2. Kantartzis K, Schick F, Häring HU, Stefan N. Environmental and genetic determinants of fatty liver in humans. Dig Dis 2010;28: 169-78. https://doi.org/10.1159/000282082
  3. Ntambi JM, Miyazaki M, Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids 2004;39:1061-5. https://doi.org/10.1007/s11745-004-1331-2
  4. Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2005;2:251-61. https://doi.org/10.1016/j.cmet.2005.09.002
  5. Sjogren P, Sierra-Johnson J, Gertow K, Rosell M, Vessby B, de Faire U, Hamsten A, Hellenius ML, Fisher RM. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008;51:328-35. https://doi.org/10.1007/s00125-007-0876-9
  6. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 2010;23:65-134.
  7. Park MY, Seo DW, Lee JY, Sung MK, Lee YM, Jang HH, Choi HY, Kim JH, Park DS. Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes. Nutr Res Pract 2011;5:192-7. https://doi.org/10.4162/nrp.2011.5.3.192
  8. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123:1939-51. https://doi.org/10.1093/jn/123.11.1939
  9. Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, Micklem KJ, Frayn KN. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 2009;52:882-90. https://doi.org/10.1007/s00125-009-1300-4
  10. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  11. Jeyakumar SM, Lopamudra P, Padmini S, Balakrishna N, Giridharan NV, Vajreswari A. Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/ GR-Ob. Nutr Metab (Lond) 2009;6:27.
  12. Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, Walajtys-Rode E, Rashid A, Chen CH, Huang CC, Wu TC, Lane MD, Diehl AM. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem 1999;274:5692-700. https://doi.org/10.1074/jbc.274.9.5692
  13. Lindström P. beta-cell function in obese-hyperglycemic mice [ob/ob Mice]. Adv Exp Med Biol 2010;654:463-77.
  14. von Eynatten M, Baumann M, Heemann U, Zdunek D, Hess G, Nawroth PP, Bierhaus A, Humpert PM. Urinary L-FABP and anaemia: distinct roles of urinary markers in type 2 diabetes. Eur J Clin Invest 2010;40:95-102. https://doi.org/10.1111/j.1365-2362.2009.02220.x
  15. Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair MG, Peters JM, Busik JV, Olson LK, Jump DB. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 2006;47:2028-41. https://doi.org/10.1194/jlr.M600177-JLR200
  16. Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999;40:1549-58.
  17. Lopez-Parra M, Titos E, Horrillo R, Ferré N, González-Périz A, Martínez-Clemente M, Planagumà A, Masferrer J, Arroyo V, Clària J. Regulatory effects of arachidonate 5-lipoxygenase on hepatic microsomal TG transfer protein activity and VLDLtriglyceride and apoB secretion in obese mice. J Lipid Res 2008;49:2513-23. https://doi.org/10.1194/jlr.M800101-JLR200
  18. Fernandez-Real JM, Menendez JA, Moreno-Navarrete JM, Blüher M, Vazquez-Martin A, Vázquez MJ, Ortega F, Diéguez C, Frühbeck G, Ricart W, Vidal-Puig A. Extracellular fatty acid synthase: a possible surrogate biomarker of insulin resistance. Diabetes 2010;59:1506-11. https://doi.org/10.2337/db09-1756
  19. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 1997;244:1-14. https://doi.org/10.1111/j.1432-1033.1997.00001.x
  20. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 2000;279:E1039-44. https://doi.org/10.1152/ajpendo.2000.279.5.E1039
  21. Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol 2007;581:431-44. https://doi.org/10.1113/jphysiol.2006.125799
  22. Rosenbaum M, Leibel RL, Hirsch J. Obesity. N Engl J Med 1997;337:396-407. https://doi.org/10.1056/NEJM199708073370606
  23. Wasserman DH, Cherrington AD. Hepatic fuel metabolism during muscular work: role and regulation. Am J Physiol 1991;260: E811-24.
  24. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A 1997;94:2557-62. https://doi.org/10.1073/pnas.94.6.2557
  25. Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun 2010;11:145-56.
  26. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 2010;17:332-41. https://doi.org/10.5551/jat.3939
  27. Park MY, Kim JH, Park DS. Anti-inflammatory activities of hog millet (Panicum miliaceum L.) in murine macrophages through IRAK-4 signaling. Korean J Food Nutr 2011;24:268-72. https://doi.org/10.9799/ksfan.2011.24.2.268
  28. Rekhter M, Staschke K, Estridge T, Rutherford P, Jackson N, Gifford-Moore D, Foxworthy P, Reidy C, Huang XD, Kalbfleisch M, Hui K, Kuo MS, Gilmour R, Vlahos CJ. Genetic ablation of IRAK4 kinase activity inhibits vascular lesion Rekhter M, Staschke K, Estridge T, Rutherford P, Jackson N, Gifford-Moore D, Foxworthy P, Reidy C, Huang XD, Kalbfleisch M, Hui K, Kuo MS, Gilmour R, Vlahos CJ. Genetic ablation of IRAK4 kinase activity inhibits vascular lesion Rekhter M, Staschke K, Estridge T, Rutherford P, Jackson N, Gifford-Moore D, Foxworthy P, Reidy C, Huang XD, Kalbfleisch M, Hui K, Kuo MS, Gilmour R, Vlahos CJ. Genetic ablation of IRAK4 kinase activity inhibits vascular lesion formation. Biochem Biophys Res Commun 2008;367:642-8. https://doi.org/10.1016/j.bbrc.2007.12.186

Cited by

  1. Effect of Hog Millet Supplementation on Hepatic Steatosis and Insulin Resistance in Mice Fed a High-fat Diet vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.501
  2. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet vol.6, pp.4, 2012, https://doi.org/10.4162/nrp.2012.6.4.322
  3. Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.505
  4. Anti-hyperlipidemic activity of an extract from roots and rhizomes of Panicum repens L. on high cholesterol diet-induced hyperlipidemia in rats vol.70, pp.5-6, 2015, https://doi.org/10.1515/znc-2014-4147
  5. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies vol.74, pp.03, 2015, https://doi.org/10.1017/S0029665115002104
  6. Natural products for controlling hyperlipidemia: review pp.1744-4160, 2019, https://doi.org/10.1080/13813455.2018.1441315
  7. Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential vol.5, pp.1, 2015, https://doi.org/10.1186/s13618-014-0022-y
  8. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health‐enhancing properties of sorghum and millet food and beverage products vol.95, pp.2, 2011, https://doi.org/10.1002/jsfa.6713
  9. 조, 기장, 수수 추출물의 항산화 효과 및 전립선 암세포주 증식 억제 효능 vol.23, pp.7, 2011, https://doi.org/10.11002/kjfp.2016.23.7.1033
  10. A High-Yielding and Medium Maturing Proso Millet (Panicum miliaceum L.) Variety &lsquo;Cheongpungchal&rsquo; vol.51, pp.1, 2011, https://doi.org/10.9787/kjbs.2019.51.1.55
  11. Nutrition in the management of type 2 diabetes mellitus: review vol.127, pp.6, 2021, https://doi.org/10.1080/13813455.2019.1657899