DOI QR코드

DOI QR Code

Formation Mechanism of a Large Schottky Barrier Height for Cr-AlGaN/GaN Heterostructure

Cr/n-AlGaN/GaN Schottky Contact에서 높은 쇼트키 장벽 형성 메카니즘에 관한 연구

  • Nam, Hyo-Duk (Department of Electronic Engineering and LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University) ;
  • Lee, Yeung-Min (Department of Electronic Engineering and LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University) ;
  • Jang, Ja-Soon (Department of Electronic Engineering and LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University)
  • 남효덕 (영남대학교 전자공학과 및 LED-IT융합산업화 연구센터) ;
  • 이영민 (영남대학교 전자공학과 및 LED-IT융합산업화 연구센터) ;
  • 장자순 (영남대학교 전자공학과 및 LED-IT융합산업화 연구센터)
  • Received : 2011.02.25
  • Accepted : 2011.03.04
  • Published : 2011.04.01

Abstract

We report on the formation mechanism of large Schottky barrier height (SBH) of nonalloyed Cr Schottky contacts on strained Al0.25Ga0.75N/GaN. Based on the current-voltage (I-V) and capacitance-voltage (C-V) data, the SBHs are determined to be 1.98 (${\pm}0.02$) and 2.07 (${\pm}0.02$) eV from the thermionic field emission and two-dimensional electron gas (2DEG) calculations, respectively. Possible formation mechanism of large SBH will be described in terms of the formation of Cr-O chemical bonding at the interface between Cr and AlGaN/GaN, low binding-energy shift to surface Fermi level, and the reduction of 2DEG electrons.

Keywords

References

  1. M. A. Khan, Q. Chen, M. S. Shur, B. T. MsDermott, and J. A. Higgins, IEEE Electron Device Lett. 17, 325 (1996). https://doi.org/10.1109/55.506356
  2. E. J. Miller, X. Z. Dang, and E. T. Yu, J. Appl. Phys. 88, 5951 (2000). https://doi.org/10.1063/1.1319972
  3. A. J. Sierakowski, W. J. Scharff, and L. F. Eastman, J. Appl. Phys,. 87, 334 (2000). https://doi.org/10.1063/1.371866
  4. Z. Lin, W. Lu, J. Lee, D. Liu, J. S. Flynm, and G. R. Brandes, Appl. Phys. Lett., 82, 4364 (2003). https://doi.org/10.1063/1.1584077
  5. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Scharff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys., 85, 3222 (1999). https://doi.org/10.1063/1.369664
  6. J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBarr, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett.,. 77, 250 (2000). https://doi.org/10.1063/1.126940
  7. Z. Lin, J. Lee, and W. Lu, Appl. Phys. Lett.,. 84, 1585 (2004). https://doi.org/10.1063/1.1650875
  8. C. M. Jeon and J. R. Lee, Appl. Phys. Lett. 82, 4301 (2003). https://doi.org/10.1063/1.1583140
  9. H. W. Jang, J. M. Baik, M. K. Lee, H. J. Shin, and J. L. Lee., Electrochem. Solid-State Lett., 151(8), G536 (2004).
  10. J.-S. Jang, T.-Y. Seong, and S.-R. Jeon, Electrochem. Solid-State Lett., 10(4), H120 (2007). https://doi.org/10.1149/1.2435474
  11. J.-S. Jang, D. Kim, and T.-Y. Seong, J. Appl. Phys. 99, 073704 (2006). https://doi.org/10.1063/1.2187274
  12. E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Appl. Phys. Lett. 71, 2794 (1997). https://doi.org/10.1063/1.120138
  13. G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 68, 2541 (1996). https://doi.org/10.1063/1.116177
  14. D. Bruuner, H. Angerer, E. Bustarret, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, J. Appl. Phys, 82, 5090 (1997). https://doi.org/10.1063/1.366309
  15. M. Shur, Mater. Res. Soc. Symp. Proc. 483, 15 (1998).