References
- L. Biel, O. Pettersson, L. Philipson, and P. Wide, "ECG analysis: A new approach in human identification," IEEE Transaction on Instrumentation and Measurement., vol. 50, No. 3, pp.808-812, 2001. https://doi.org/10.1109/19.930458
- M. Irvine, S. A. Israel, W. T. Scruggs and W. J. Worek, "EigenPulse : robust human identification from cardiovascular function," Pattern Recognition., vol.41, Issue.11, pp.3427-3435, 2008. https://doi.org/10.1016/j.patcog.2008.04.015
- K. Esbensen, S. Schonkopf, and T. Midtgaard, Multivariate Anal. In Practice, 1st ed. Trondheim,Norway: Camo, 1994, vol. 1, pp. 361.
- T. W. Shen, W. J. Tompkins, "Biometric statistical study of one-lead ECG features and body mass index (BMI)," in Proc. 27th Annual International Conference Engineering in Medicine and Biology Society, Shanghai, China, September, 2005, pp. 1162-1165.
- S. A. Israel and J. M. Irvine, A. Cheng, M. D. Wiederhold and B. K. Wiederhold, "ECG to identify individuals," Pattern Recognition., vol.38, Issue.1, pp.138-142, 2005.
- K. N. Plataniotis, D. Hatzinakos, and J. K. M. Lee, "ECG biometric recognition without fiducial detection," in Proc. of Biometrics Symposiums, Baltimore, USA, September, 2006, pp.1-6.
- G. Wubbeler, M. Stavridis, D. Kreiseler, R. D. Bousseljot and C. Elster, "Verification of humans using the electrocardiogram," Pattern Recognition Letter, vol28, Issue.10, pp.1172, 2007. https://doi.org/10.1016/j.patrec.2007.01.014
- Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis, "Analysis of human electrocardiogram ECG for biometric recognition," EURASIP Journal on Advances in Signal Processing, vol.2008, pp.19, 2008.
- L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, "Comparison of classifier methods: A case study in handwriting digit recognition," in Proc. Int. Conf. Pattern Recognition., pp. 77-87, 1994.
- S. Knerr, L. Personnaz, and G. Dreyfus, "Single-layer learning revisited:A stepwise procedure for building and training a neural network,"in Neurocomputing: Algorithms, Architectures and Applications, J. Fogelman,Ed. New York: Springer-Verlag, 1990.
- J. Shawe-Taylor J. Platt, N. Cristianini, "Large margin dags for multiclass classification," in Advances in Neural Information Processing Systems, pp.547-553, 2000.
- J. Weston and C. Watkins, "Multi-class support vector machines," Technical report CSD-TR-98-04, 1998.
- K. Crammer and Y. Singer, "On the algorithmic implementation of multiclass kernel-based vector machines," Technical report, School of Computer Science and Engineering, Hebrew University, 2001.
- CW. Hsu and CJ. Lin, "A Comparison of Methods for Multiclass Support Vector Machins", IEEE Transaction on Neural Network, Vol.13, No.2, pp.415-425, March 2002. https://doi.org/10.1109/72.991427
- Y. Sun, K. L. Chan and Krishnan "Characteristic wave detection in ECG signal using morphological transform" BMC Cardiovasc. Disorders, 2005. https://doi.org/10.1186/1471-2261-5-28
- F. A. Afsar, M. Arif, "Robust electrocardiogram (ECG) beat classification using discrete wavelet transform," Physiological Measurement, Vol.29, pp.555-570, 2008. https://doi.org/10.1088/0967-3334/29/5/003
- S.S. Mehta and N.S. Lingayat, "Development of entropy based algorithm for cardiac beat detection in 12-lead electrocardiogram," Signal Processing 87, pp.3190-3201, 2007. https://doi.org/10.1016/j.sigpro.2007.06.009
- 김정국 외 7인, "Biphasic 자동형 제세동기 개발", 대한의용 생체공학회논문지, Vol.25, No2, pp.119-127, 2004
- JK. kim, MK. kim, D. kim, J. Park, W.Huh, "An event detection algorithm in ECG with 60Hz interference and baselinewandering," ACM International Conference Proceeding Series; Vol. 403, 2009
- G. W. John, "Medical Instrumentation; Application and Design", pp.121-151, 1992
- C. Cortes and V. Vapnik, "Support-vector network," Machine Learning, vol. 20, pp. 273-297, 1995.
- C.J.C. Burges, "A tutorial on support vector machines for pattern recognition, Data min." Knowledge Discovery, pp.955-971, 1998
- U. KreBel, B. Scholkopf, C.J. C. Burges, and A. J. Smola, "Pairwise classification and support vector machines, in Advances in Kernel Methods-Support Vector Learning," Cambridge, MA: MIT Press, pp. 255-268, 1999.
- J. Friedman. (1996) Another Approach to Polychotomous Classification. Dept. Statist., Stanford Univ., Stanford, CA. [Online]. Available: http://www-stat.stanford.edu/reports/friedman/poly.ps.Z
- The MIT-BIH Sinus Rhythm database. Available: http://www.physionet.org/hysiobank/database/nsrdb/
- D. Dobrev, T. Neycheva, N. Mudrov, "Simple two-electrode bio signal amplifier", Med. Biol. Eng. Comput. 43, pp.725-730, 2005. https://doi.org/10.1007/BF02430949