식물원료 첨가가 In vitro 반추위 메탄가스 발생에 미치는 영향

The Effect of Vegetable Sources Supplementation on In vitro Ruminal Methane Gas Production

  • 투고 : 2011.10.31
  • 심사 : 2011.12.19
  • 발행 : 2011.12.30

초록

각 시판되고 있는 식물을 2개의 그룹으로 나눠 첨가 후 각 시간별 배양을 실시한 후 pH, $NH_3$, VFA 발생량, 총 가스발생량, $H_2$, $CO_2$, $CH_4$ 발생량을 조사하였다. 그룹 1은 상추와 대파첨가구에서 암모니아 농도가 높았고 고추첨가구에서 낮았다 (P<0.05), 그룹 2는 마늘첨가구에서 암모니아 농도가 낮았고 (P<0.05) 깻잎, 무순과 부추첨가 구에서 높았다 (P<0.05). 마늘과 고추첨가구에서 단백질분해과정 중 아미노산에서 암모니아로 분해되는 과정에 영향을 미쳤을 것으로 사료된다. 총 VFA 농도는 대파첨가구에서 유의적으로 높았으나 (P<0.05) 그 외 시험구에서는 대조구와 차이가 없었다. Acetate와 propionate의 비율에서 볼 때 마늘첨가구가 propionate의 량이 상대적으로 증가한 것을 알 수 있었다. 모든 처리구가 대조구에 비해 가스발생량이 대체로 높았으며, 대파와 양파 첨가구가 유의적으로 높았다 (P<0.05). 마늘과 깻잎 첨가구를 제외한 모든 처리구에서 가스 발생량이 유의적으로 높았다 (P<0.05). 생강목에 속하는 강황과 생강첨가구는 pH와 총 가스발생량에서 비슷한 결과를 나타냈으며 in vitro 발효를 높였다. 마늘첨가구는 반추위내 총 가스발생량이 대조구와 유의적인 차이가 없었다 (P<0.05). 모든 시험구에서 총 가스발생량과 $CO_2$ 발생량은 대체로 유사한 경향을 보였다. 마늘첨가구는 총 가스발생량은 대조구와 차이가 없었으나 $CO_2$ 발생량은 대조구보다 유의적으로 높았다 (P<0.05). 마늘첨가구의 $CH_4$ 발생량은 배양시간과 관계없이 매우 낮은 수준을 유지했으며 48시간 배양 후 대조구의 약 1/3 수준으로 낮았다 (P<0.05). $H_2$는 거의 모든 시험구에서 미량 발생되었는데, 대조적으로 마늘첨가구에서만 매우 높은 수준으로 검출되었다. 마늘첨가구에서 g단위 DM 당 $CH_4$ 발생량이 현저히 낮았으며 다른 처리구는 대체로 대조구에 비해 높았다. 본 시험에서는 allium속의 마늘, 부추, 양파, 파를 포함한 시판 중인 채소를 이용하여 in vitro 발효조절시험을 실시하였는데 특정 식물들은 in vitro 발효 대사에 영향을 주었으며 특히 마늘 첨가는 $CH_4$ 생성에 직접적으로 영향을 준 것으로 사료된다.

The researchers have tried to reduce ruminal methane gas ($CH_4$) and to convert it into beneficial nutrient for several decades. This study was conducted to screen the methane-reducing vegetables among lettuce, hot pepper, spring onion, onion, turmeric, sesame leaf, garlic, radish sprout, leek and ginger nutritiously on the in vitro ruminal fermentation. The heat-treated vegetables at the 10% of substrate (timothy) were used to reduce methane production on the in vitro anaerobic experiment of 0, 6, 12, 24 and 48 h incubation time. Total gas production, pH, ammonia, $H_2$, $CO_2$, $CH_4$, and volatile fatty acid (VFA) were measured as indicators of in vitro fermentation product containing methane gas. All treatments except garlic showed a tendency to increase in total gas production. The result of ammonia showed that garlic and hot pepper affected rumen bacteria concerned protein metabolism and that lettuce and spring onion increased ammonia production. Garlic decreased $CH_4$ production in inverse proportion to $H_2$. Lettuce, spring onion, onion, garlic, radish sprout, leek and ginger increased propionate of VFA. Garlic balanced the ruminal fermentation in the pH, $H_2$, $CH_4$, acetate and propionate. This results showed that methane production at in vitro study was inhibited by heat-treated garlic supplementation. In conclusion, this study suggests that ruminal fermentation covering methane production might be controled by proper vegetables.

키워드

참고문헌

  1. A.O.A.C. 1990. Official methods of analysis (14th Ed.). Association of official analytical chemists. Washington, D.C.
  2. Blaxter, K. L. and Clapperton, J. L. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19, 511-522. https://doi.org/10.1079/BJN19650046
  3. Blaxter, K. L. 1989. Energy Metabolism in Animals and Man. Cambridge University Press, New York.
  4. Bauchop T. 1967. Inhibition of rumen methanogenesis by methane analogues. J. Bacteriol. 94, 171-175.
  5. Carmean, B. R. 1991. Persistence of monensin effects on nutrient flux in steers. M. S. Thesis. Colorado State Univ., Fort Collins.
  6. Crutzen, P. J. 1995. On the role of $CH_4$ in atmospheric chemistry: Sources, sinks and possible reductions in anthropogenic sources. Ambio 24, 52-55.
  7. Czerkawski, J. W., K. L. Blaxter and Wainman, F. W. 1966. The metabolism of oleic, linoleic, and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20, 349-362. https://doi.org/10.1079/BJN19660035
  8. Haaland, G. L. 1978. Protected fat in bovine rations. Ph.D. Dissertation. Colorado State University, Fort Collins.
  9. IPCC (Intergovernmental Panel on Climate Change). 1992. Climate change 1992. Ed. Houghton, J.T. et al. Cambridge University Press, New York.
  10. IPCC (Intergovernmental Panel on Climate Change). 1996. Guidelines for national greenhouse gas inventory. Green House Gas Inventory Workbook. 2.
  11. Johnson, D. E., Wood, A. S., Stone, J. B. and Moran, E. J. 1972. Some effects of methane inhibition in ruminants (steers). Can. J. Anim. Sci. 52, 703-712. https://doi.org/10.4141/cjas72-083
  12. Johnson, D. E. 1974. Adaptational responses in nitrogen and energy balance of lambs fed a methane inhibitor. J. Anim. Sci. 38, 154-157. https://doi.org/10.2527/jas1974.381154x
  13. Johnson, D. E., Hill, T. M., Carmean, B. R., Lodman, D. W. and Ward, G. M. 1991. New perspectives on ruminant methane emissions. In Energy Metabolism of Farm Animals (C. Wenk and M. Boessinger, eds) pp. 376-379. ETH, Zurich, Switzerland.
  14. Johnson, D. E., Hill, T. M., Ward, G. M., Johnson, K. A., Branine, M. E., Carmean, B. R. and Lodman, D. W. 1993. Principle factors varying methane emissions from ruminants and other animals. Atmospheric Methane: Source, Sinks, and Role in Global Change. M. A. K. Khalil. Berlin, Germany, Springer-Verlag. NATO ADI Series Vol 113.
  15. Johnson, K. A. and Johnson, D. E. 1995. Methane emissions from cattle. J. Anim. Sci. 73, 2483-2492. https://doi.org/10.2527/1995.7382483x
  16. Jones, G. A. 1972. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 18, 1783-1787. https://doi.org/10.1139/m72-279
  17. Joyner, A. E., Brown, L. J., Fogg, T. J. and Rossi, R. T. 1979. Effect of monensin on growth, feed efficiency and energy metabolism of lambs. J. Anim. Sci. 48, 1065-1069. https://doi.org/10.2527/jas1979.4851065x
  18. Koch, H. P. and Lawson, L. D. 1996. Garlic ; The science and therapeutic application of Allium sativum L. and related species, p. 95, Williams & Wilkins, Baltimore.
  19. Lee, H. J., Lee, S. C., Kim, J. D., Oh, Y. G., Kim, B. K., Kim, C. W. and Kim, K. J. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim Sci. 16(8), 1143-1150. https://doi.org/10.5713/ajas.2003.1143
  20. McAllister, T. A., Okine, E. K., Mathison, G. W. and Cheng, K. J. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76, 231-243. https://doi.org/10.4141/cjas96-035
  21. Moe, P. W. and Tyrrell, H. F. 1979. Methane production in dairy cows. J. Dairy Sci. 62, 1583-1586. https://doi.org/10.3168/jds.S0022-0302(79)83465-7
  22. Moss, A. R. 1993. Methane : global warming and production by animals. Chalcombe Publications, Kingston, UK.
  23. Nollet, L., Demeyer, D. and Verstraete, W. 1996. Stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis: $e{\euro}ect$ of 2-bromo-ethanesulfonic acid (BES) and addition of Peptostreptococcus productus ATCC35244. Appl. Environ. Microbiol. 63, 194-200.
  24. Nugent, J. H. A. and Mangan, J. L. 1981. Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucern (Medicago sativa L.). Br. J. Nutr. 46, 39-58. https://doi.org/10.1079/BJN19810007
  25. O'Kelly, J. C. and Spiers, W. W. 1992. Effect of monensin on methane and heat productions of steers fed lucerne hay. Aust. J. Agric. Res. 43, 1789-1793. https://doi.org/10.1071/AR9921789
  26. Okine, E. K., G. W. Mathison, and R. T. Hardin. 1989. Effects of change in frequency of reticular contractions on fluid and particulate passage rates in cattle. J. Anim. Sci. 67:3388-3396. https://doi.org/10.2527/jas1989.67123388x
  27. Rumpler, W. V., Johnson, D. E. and Bates, D. B. 1986. The effect of high dietary cation concentrations on methanogenesis by steers fed with or without ionophores. J. Anim. Sci. 62, 1737-1741. https://doi.org/10.2527/jas1986.6261737x
  28. Shibata, M., Terada, F., Iwasaki, K., Kurihara, M. and Nishida, T. 1992. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate rations. Anim. Sci. Technol. (Jpn.), 63(12), 1221-1227.
  29. Van der Honing, Y., Wieman, B. J., Steig, A. and van Donselaar, B. 1981. The effect of fat supplementation of concentrates on digestion and utilization of energy by productive dairy cattle. Neth. J. Agnc. Sci. 29, 79-85.
  30. Van Nevel, C. J. and Demeyer, D. I. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34, 251-257.
  31. Whetstone, H. D., David, C. L. and Bryant, M. P. 1981. Effect of monensin on breakdown of protein by ruminal microorganisms in vitro. J. Anim. Sci. 53, 803-809. https://doi.org/10.2527/jas1981.533803x
  32. Wolin, M. J. 1979. The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv. Microbial. Ecol. 3, 49-77.
  33. 양승학, 조원모, 이현준, 김상범, 김현섭, 조성백, 박규현, 곽정훈, 최동윤, 이상철, 2011. 육질개선용 미량물질 투여를 통한 in vitro 반추위환경 조절연구. 동물자원연구 22(1):19-27.