DOI QR코드

DOI QR Code

Amorphous Obstacle Avoidance Based on APF Methods for Local Path Planning

국소 경로 계획법을 위한 APF 기반의 무정형 장애물 회피 연구

  • Received : 2010.07.13
  • Accepted : 2010.10.08
  • Published : 2011.02.25

Abstract

This paper presents a method about amorphous obstacles avoidance for local path planning in the two-dimensional sensor environment. In particular, the proposed method is extended from some of the recent studies about a point obstacle avoidance. In the paper, repulsive forces of two types are proposed in order that the robot avoids from the amorphous obstacle with various size and form. A judgment of curvatures in the proposed method simplifies the recognition of obstacles to make the path-planning efficient. In addition, the line of sight(LOS) and the range of recognition are considered in the environment. By simulation results, the proposed method for amorphous obstacle avoidance shows better performance than the related existing method and we confirmed advantages of proposed method.

본 논문은 국소 경로 계획법을 위한 2차원 센서 환경에서 무정형의 장애물의 회피에 대한 연구를 다루었다. 본 연구는 인공 포텐셜 함수(Artificial Potential Function, APF)를 사용하는 기존의 연구에서 점 형태의 장애물을 다루는 방법을 응용 및 확장한 것으로, 다양한 형태의 크기와 모양을 지니는 장애물에 대해서 두 가지 새로운 형태의 반발 포텐셜 함수를 제안한다. 제안된 방법에 의한 곡률 판단법은 장애물을 단순하게 파악하여, 경로계획에 효율적으로 사용되었다. 실제적인 국소경로 계획법에 맞게 직선 시야(Line of Sight, LOS)와 로봇의 인지범위(Range)등을 고려하는 알고리즘을 사용하였다. 여러장애물 세트(Set)에 대하여 시뮬레이션 결과를 통하여 제안한 방법과 기존 연구의 차이점을 알아보았으며, 제안한 방법의 장점에 대하여 확인하였다.

Keywords

References

  1. J. -C. Latombe, Robot Motion Planning. Norwood, Ma, Kluwer Academic Publishers, 1991.
  2. S. Thrum, J. -S. gutmann, D. Fox, W. Burgard, and B. Kuipers “Integrating Ropological and Metric Maps for Mobile Robot Navigation: A Statistical Approach,” Proc. of the National Conference on Artificial Intelligence (AAAI), 1998.
  3. N. E. Leonard and E. Fiorelli, “Virtual Leaders, Artificial Potentials and Coordinated Control of Groups,” 40th IEEE Conf. Decision and Control, pp. 2968-2973, Dec., 2001.
  4. G. Ye, H. O. Wang and K. Tanaka, “Coordinated motion control of swarms with dynamic connectivity in potential flows,” Proc. of the 16th International Federation of Automatic Control World Congress, Prague, Czech Republic, 2005.
  5. Y. Koren, and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot navigation,” Proc. of the IEEE int. Conf. on Robotics & Automation, pp. 1398-1404, 1991.
  6. M. H. Mabrouk, C. R. McInnes, "Solving the potential field local minimum problem using internal agent states", Robotics and Autonomous Systems, Vol. 56, Dec. 2008.
  7. D. H. Kim, H. O. Wang, and S. Shin, “Decentralized control of autonomous swarm systems using artificial potential functions : Analytical Design Guidelines,” Int. Journal of Intelligent and Robotic Systems, vol. 45, no. 4, pp. 369-394, 2006. https://doi.org/10.1007/s10846-006-9050-8
  8. Dong Hun Kim and Seiichi Shin, “New Repulsive Potential Function with an Angle Distribution for Local Path Planning,” Advanced Robotics, vol. 20, no. 1, pp. 25-47, Jan. 2006. https://doi.org/10.1163/156855306775275549
  9. Dong Hun Kim, Seiichi Shin, and Hua O. Wang, "Decentralized Control of Autonomous Swarm Systems, Using Artificial Potential Functions : Analytic al Design Guidelines," Int. Journal of Intelligent and Robotic Systems, vol. 45, no. 4, pp. 369-394, Apr. 2006. https://doi.org/10.1007/s10846-006-9050-8
  10. S. S. Ge, and Y. J. Cui, "Dynamic motion planning for mobile robots using potential field method," Autonomous Robots, vol. 13, no.3, pp. 207-222, 2002. https://doi.org/10.1023/A:1020564024509