DOI QR코드

DOI QR Code

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan (Center for Safety Measurements, Korea Research Institute of Standards and Science) ;
  • Jin, Kyung-Hwan (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ye, Jong-Chul (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Jae-Wook (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Yee, Dae-Su (Center for Safety Measurements, Korea Research Institute of Standards and Science)
  • 투고 : 2011.01.12
  • 심사 : 2011.02.09
  • 발행 : 2011.03.25

초록

Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

키워드

참고문헌

  1. Y.-S. Lee, Principles of Terahertz Science and Technology(Springer, New York, USA, 2009), Chapter 3.
  2. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertztime-domain spectroscopy of water vapor,” Opt. Lett. 14,1128-1130 (1989). https://doi.org/10.1364/OL.14.001128
  3. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin,and C. R. Stanley, “Coherent manipulation of semiconductorquantum bits with terahertz radiation,” Nature 410, 60-63(2001). https://doi.org/10.1038/35065032
  4. E. Pickwell and V. P. Wallace, “Biomedical applications ofterahertz technology,” J. Phys. D: Appl. Phys. 39, R301-R310(2006). https://doi.org/10.1088/0022-3727/39/17/R01
  5. H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, andY. Kasai, “Precise measurement of pressure broadening parametersfor water vapor with a terahertz time-domain spectrometer,”J. Quant. Spectrosc. Radiat. Transfer. 109, 2303-2314 (2008). https://doi.org/10.1016/j.jqsrt.2008.03.005
  6. G. J. Kim, S. G. Jeon, J. I. Kim, and Y. S. Jin, “Highspeed scanning of terahertz pulse by a rotary optical delayline,” Rev. Sci. Instrum. 79, 106102-1-106102-3 (2008). https://doi.org/10.1063/1.2995763
  7. C. Janke, M. Forst, M. Nagel, and H. Kurz, “Asynchronousoptical sampling for high-speed characterization of integratedresonant terahertz sensors,” Opt. Lett. 30, 1405-1407 (2005). https://doi.org/10.1364/OL.30.001405
  8. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous opticalsampling terahertz time-domain spectroscopy for ultrahighspectral resolution and rapid data acquisition,” Appl. Phys.Lett. 87, 061101-1-061101-3 (2005). https://doi.org/10.1063/1.2008379
  9. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt,S. Winnerl, and M. Helm, “High-resolution THz spectrometerwith kHz scan rates,” Opt. Express 14, 430-437 (2006). https://doi.org/10.1364/OPEX.14.000430
  10. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C.Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopybased on high-speed asynchronous optical sampling,” Rev.Sci. Instrum. 78, 035107-1-035107-8 (2007). https://doi.org/10.1063/1.2714048
  11. C. Kistner, A. Andre, T. Fischer, A. Thoma, C. Janke, A.Bartels, T. Gisler, G. Maret, and T. Dekorsy, “Hydrationdynamics of oriented DNA films investigated by time-domainterahertz spectroscopy,” Appl. Phys. Lett. 90, 233908-1-233908-3 (2007).
  12. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G.Baraniuk, and M. C. Nuss, “Gas sensing using terahertztime-domain spectroscopy,” Appl. Phys. B 67, 379-390 (1998). https://doi.org/10.1007/s003400050520
  13. B. Ferguson and D. Abbott, “De-noising techniques forterahertz responses of biological samples,” MicroelectronicsJournal 32, 943-953 (2001). https://doi.org/10.1016/S0026-2692(01)00093-3
  14. B. Ferguson and D. Abbott, “Wavelet de-noising of opticalterahertz pulse imaging data,” Fluctuation and Noise Letters1, L65-L69 (2001). https://doi.org/10.1142/S0219477501000226
  15. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk,J. V. Rudd, and M. Koch, “Recent advances in terahertzimaging,” Appl. Phys. B 68, 1085-1094 (1999). https://doi.org/10.1007/s003400050750
  16. S. G. Mallat, A Wavelet Tour of Signal Processing (ElsevierAcademic Press, Burlington, MA, USA, 1999), Chapter 7, 9, 10.
  17. P. Moulin, “Wavelet thresholding techniques for power spectrumestimation,” IEEE Trans. Signal Processing 42, 3126-3136(1994). https://doi.org/10.1109/78.330372
  18. D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptationby wavelet shrinkage,” Biometrika 81, 425-455 (1994). https://doi.org/10.1093/biomet/81.3.425

피인용 문헌

  1. Frequency Tuning Characteristics of a THz-wave Parametric Oscillator vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.097
  2. Pattern identification of biomedical images with time series: Contrasting THz pulse imaging with DCE-MRIs vol.67, 2016, https://doi.org/10.1016/j.artmed.2016.01.005
  3. Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework vol.137, 2016, https://doi.org/10.1016/j.cmpb.2016.08.026
  4. Investigation of Terahertz Generation from Bulk and Periodically Poled LiTaO3Crystal with a Cherenkov Phase Matching Scheme vol.19, pp.3, 2015, https://doi.org/10.3807/JOSK.2015.19.3.297
  5. Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy vol.17, pp.5, 2013, https://doi.org/10.3807/JOSK.2013.17.5.454
  6. An approach for automatic construction of the wavelet-domain de-noising procedure for THz pulsed spectroscopy signal processing vol.486, 2014, https://doi.org/10.1088/1742-6596/486/1/012034