DOI QR코드

DOI QR Code

Solid-State Laser Mode-Locking Near 1.25 μm Employing a Carbon Nanotube Saturable Absorber Mirror

  • Cho, Won-Bae (Division of Energy Systems Research, Ajou University) ;
  • Choi, Sun-Young (Division of Energy Systems Research, Ajou University) ;
  • Kim, Jun-Wan (Division of Energy Systems Research, Ajou University) ;
  • Yeom, Dong-Il (Division of Energy Systems Research, Ajou University) ;
  • Kim, Ki-Hong (Division of Energy Systems Research, Ajou University) ;
  • Rotermund, Fabian (Division of Energy Systems Research, Ajou University) ;
  • Lim, Han-Jo (Division of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2011.01.13
  • 심사 : 2011.02.24
  • 발행 : 2011.03.25

초록

We demonstrate passive mode-locking of a Cr:forsterite laser with a single-walled carbon nanotube saturable absorber mirror (SWCNT-SAM). Without compensation of intra-cavity dispersion, the self-mode-locked laser generates 11.7 ps pulses at a repetition rate of 86 MHz. The dispersion-compensated laser yields ultrashort pulses as short as 80 fs near $1.25\;{\mu}m$ at 78 MHz with average output powers up to 295 mW, representing the highest power ever reported for mode-locked solid-state lasers based on saturable absorption of SWCNTs in this spectral region.

키워드

참고문헌

  1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B.Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek,and J. Aus der Au, “Semiconductor saturable absorber mirrors(SESAM’s) for femtosecond to nanosecond pulse generationin solid-state lasers,” IEEE J. Select. Topics Quantum Electron.2, 435-453 (1996). https://doi.org/10.1109/2944.571743
  2. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F.Ferguson, and M. T. Asom, “Solid-state low-loss intracavitysaturable absorber for Nd:YLF lasers: an antiresonant semiconductorFabry-Perot saturable absorber,” Opt. Lett. 17, 505-507(1992). https://doi.org/10.1364/OL.17.000505
  3. H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J.Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller,“Role of implantation-induced defects on the response timeof semiconductor saturable absorbers,” Appl. Phys. Lett.75, 1437-1439 (1999). https://doi.org/10.1063/1.124718
  4. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya,T. Nakagawa, and H. Takahashi, “Broadband semiconductorsaturable-absorber mirror for a self-starting mode-lockedCr:forsterite laser,” Opt. Lett. 23, 1465-1467 (1998). https://doi.org/10.1364/OL.23.001465
  5. J.-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P.Roussignol, O. Jost, and L. Capes, “Ultrafast carrier dynamicsin single-wall carbon nanotubes,” Phys. Rev. Lett. 90, 5-8(2003).
  6. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan,Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafastoptical switching properties of single-wall carbon nanotubepolymer composites at 1.55 ${\mu}m$,” Appl. Phys. Lett. 81, 975-977 (2002). https://doi.org/10.1063/1.1498007
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Lasermode locking using a saturable absorber incorporating carbonnanotubes,” J. Lightwave Technol. 22, 51-56 (2004). https://doi.org/10.1109/JLT.2003.822205
  8. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami,S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara,“Ultrashort pulse-generation by saturable absorber mirrorsbased on polymer-embedded carbon nanotubes,” Opt. Express13, 8025-8031 (2005). https://doi.org/10.1364/OPEX.13.008025
  9. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi,S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov,and U. Griebner, “Sub-100 fs single-walled carbon nanotubesaturable absorber mode-locked Yb-laser operation near 1${\mu}m$,” Opt. Express 17, 20109-20116 (2009). https://doi.org/10.1364/OE.17.020109
  10. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner,V. Petrov, and F. Rotermund, “Mode-locked self-startingCr:forsterite laser using a single-walled carbon nanotubesaturable absorber,” Opt. Lett. 33, 2449-2451 (2008). https://doi.org/10.1364/OL.33.002449
  11. W. B. Cho, A. Schmidt, S. Y. Choi, V. Petrov, U. Griebner,G. Steinmeyer, S. Lee, D.-I. Yeom, and F. Rotermund,“Mode locking of a Cr:YAG laser with carbon nanotubes,”Opt. Lett. 35, 2669-2671 (2010). https://doi.org/10.1364/OL.35.002669
  12. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F.Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos,M. C. Pujol, J. J. Carvajal, M. Aguilo, and F. Díaz, “Passivemode-locking of a Tm-doped bulk laser near 2 ${\mu}m$ using a carbon nanotube saturable absorber,” Opt. Express 17, 11007-11012 (2009). https://doi.org/10.1364/OE.17.011007
  13. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G.Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim,and F. Rotermund, “Boosting the nonlinear optical responseof carbon nanotube saturable absorbers for broadband mode-lockingof bulk lasers,” Adv. Funct. Mater. 20, 1937-1943(2010). https://doi.org/10.1002/adfm.200902368
  14. V. Liverini, S. Scho, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a $1.3-{\mu}m$ solid-state laser,” Appl. Phys. Lett. 84, 4002-4004 (2004). https://doi.org/10.1063/1.1748841
  15. M. P. Lumb, E. Clarke, E. Harbord, P. Spencer, R. Murray,F. Masia, P. Borri, W. Langbein, C. G. Leburn, C. Jappy, N. K.Metzger, C. T. A. Brown, and W. Sibbett, “Ultrafast absorptionrecovery dynamics of 1300 nm quantum dot saturable absorbermirrors,” Appl. Phys. Lett. 95, 041101-3 (2009). https://doi.org/10.1063/1.3186081
  16. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser,and U. Keller, “Q-switching stability limits of continuous-wavepassive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999). https://doi.org/10.1364/JOSAB.16.000046
  17. I. Thomann, L. Hollberg, S. A. Diddams, and R. Equall,“Chromium-doped forsterite: dispersion measurement withwhite-light interferometry,” Appl. Opt. 42, 1661-1666 (2003). https://doi.org/10.1364/AO.42.001661

피인용 문헌

  1. Influence on the saturable absorption of the induced losses by photodeposition of zinc nanoparticles in an optical fiber vol.26, pp.2, 2018, https://doi.org/10.1364/OE.26.001556
  2. Ultrafast lasers mode-locked by nanotubes and graphene vol.44, pp.6, 2012, https://doi.org/10.1016/j.physe.2012.01.012