DOI QR코드

DOI QR Code

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan (Traffic and Transportation College, Jilin University) ;
  • Li, Xiaotao (Mechanical Science and Engineering College, Jilin University) ;
  • Su, Jian (Traffic and Transportation College, Jilin University) ;
  • Pan, Hongda (Traffic and Transportation College, Jilin University) ;
  • Tian, Guangdong (Traffic and Transportation College, Jilin University)
  • 투고 : 2010.10.22
  • 심사 : 2011.01.20
  • 발행 : 2011.03.25

초록

Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

키워드

참고문헌

  1. G. I. Kwon and Y. H. Choi, “Image-processing basedpanoramic camera employing single fisheye lens,” J. Opt.Soc. Korea 14, 245-259 (2010). https://doi.org/10.3807/JOSK.2010.14.3.245
  2. C. J. Tay, C. Quan, Y. H. Huang, and Y. Fu, “Digitalimage correlation for whole field out-of-plane displacementmeasurement using a single camera,” Opt. Comm. 251, 23-36(2005). https://doi.org/10.1016/j.optcom.2005.02.070
  3. H. J. Choi, J. H. Park, J. S. Hong, and B. Lee, “Animproved stereovision scheme using single camera and acomposite lens array,” J. Opt. Soc. Korea 8, 72-78 (2004). https://doi.org/10.3807/JOSK.2004.8.2.072
  4. K. C. Kwon, J. K. Choi, and Y. S. Choi, “Automaticcontrol of horizontal-moving stereoscopic camera by disparitycompensation,” J. Opt. Soc. Korea 8, 150-155 (2002).
  5. Y. Beiderman, M. Teicher, J. Garci, V. Mico, and Z.Zalevsky, “Optical technique for classification, recognitionand identification of obscured objects,” Opt. Comm. 283,4274-4282 (2010). https://doi.org/10.1016/j.optcom.2010.06.059
  6. Y. C. Park, C. G. Park, M. H. Kang, and S. J. Ahn, “Ahigh-speed digital laser grating projection system for themeasurement of 3-dimensional shapes,” J. Opt. Soc. Korea13, 251-255 (2009). https://doi.org/10.3807/JOSK.2009.13.2.251
  7. D. H. Shin and E. S. Kim, “Computational integral imagingreconstruction of 3D object using a depth conversiontechnique,” J. Opt. Soc. Korea 12, 131-135 (2008). https://doi.org/10.3807/JOSK.2008.12.3.131
  8. Y. I. Abdel-Aziz and H. M. Karara, “Direct linear transformationinto object space coordinates in close-range photogrammetry,”in Proc. the Symposium on Close-range Photogrammetry(Falls Church, VA, USA, Jan. 1971), pp. 1-18.
  9. H. Hatze, “High-precision three-dimensional photogrammetriccalibration and object space reconstruction using a modifiedDLT-approach,” J. Biomech. 21, 533-538 (1988). https://doi.org/10.1016/0021-9290(88)90216-3
  10. D. B. Gennery, “Stereo-camera calibration,” in Proc. the10th Image Understanding Workshop (Menlo Park, CA,USA, Nov. 1979), pp 101-108.
  11. A. Isaguirre, P. Pu, and J. Summers, “A new developmentin camera calibration calibrating a pair of mobile cameras,”in Proc. International Conference on Robotics and Automation(St. Louis, MO, USA, Mar. 1985), pp. 74-79.
  12. S. Ganapathy, “Decomposition of transformation matricesfor robot vision,” in Proc. IEEE International Conferenceon Robotics and Automation (Atlanta, GA, USA, Mar.1984), pp. 130-139. https://doi.org/10.1109/ROBOT.1984.1087163
  13. O. D. Faugeras and G. Toscani, “The Calibration problemfor stereo,” in Proc. International Conference of ComputerVision and Pattern Recognition (Miami Beach, FL, USA,Jun. 1986), pp. 15-20.
  14. R. K. Len and R. Y. Tsai, “Techniques for calibration ofthe scale factor and image center for high accuracy 3Dmachine vision metrology,” in Proc. IEEE InternationalConference on Robotics and Automation (Raleigh, NC, USA,Mar. 1987), pp. 68-75. https://doi.org/10.1109/ROBOT.1987.1088012
  15. R. Y. Tsai, “An efficient and accurate camera calibrationtechnique for 3D machine vision,” in Proc. IEEE Conferenceon Computer Vision and Pattern Recognition (MiamiBeach, FL, USA, Jun. 1986), pp. 364-374.
  16. R. Y. Tsai, “An efficient and accurate camera calibrationtechnique for 3D machine vision,” IEEE Trans. Robot 3,364-374 (1987).
  17. S. Tomas, M. Daniel, and P. Tomas, “A convenient multi-cameraself-calibration for virtual environments,” Teleoperatorsand Virtual Environments 14, 407-422 (2005). https://doi.org/10.1162/105474605774785325
  18. Z. Zhang, “Flexible camera calibration by viewing a planefrom unknown orientations,” in Proc. International Conferenceon Computer Vision (Kerkyra, Corfu, Greece, Sep. 1999),pp. 666-673.
  19. Z. Zhang, “A flexible new technique for camera calibration,”IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330-1334 (2000). https://doi.org/10.1109/34.888718
  20. H. Kato and M. Billinghurst, “Marker tracking and HMDCalibration for a video-based augmented reality conferencingsystem,” in Proc. the Second IEEE and ACM InternationalWorkshop on Augmented Reality (San Francisco, CA, USA,Oct. 1999), pp. 85-95. https://doi.org/10.1109/IWAR.1999.803809
  21. K. C. Kwon, Y. T. Lim, N. Kim, Y. J. Song, and Y. S.Choi, “Vergence control of binocular stereoscopic camerausing disparity information,” J. Opt. Soc. Korea 13, 379-385(2009). https://doi.org/10.3807/JOSK.2009.13.3.379
  22. K. Zhang, B. Xu, L. Tang, and H. Shi, “Modeling ofbinocular vision system for 3D reconstruction with improvedgenetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722-728(2006). https://doi.org/10.1007/s00170-005-2566-4
  23. W. Sun and J. R. Cooperstock, “An empirical evaluation offactors influencing camera calibration accuracy using threepublicly available techniques,” Mach. Vision Appl. 17, 51-67(2006). https://doi.org/10.1007/s00138-006-0014-6
  24. H. H. Cui, W. H. Liao, X. S. Cheng, N. Dai, and T. R. Yuan, “A three-step system calibration procedure with errorcompensation for 3D shape measurement,” Chinese Opt. Lett.8, 33-37 (2010). https://doi.org/10.3788/COL20100801.0033
  25. C. Ricolfe-Viala and A. J. Sanchez-Salmeron, “Robustmetric calibration of non-linear camera lens distortion,” PatternRecognit. 43, 1688-1699 (2010). https://doi.org/10.1016/j.patcog.2009.10.003
  26. Z. W. Li, Y. S. Shi, C. J. Wang, D. H. Qin, and K.Huang, “Complex object 3D measurement based on phase-shiftingand a neural network,” Opt. Comm. 282, 2699-2706(2009). https://doi.org/10.1016/j.optcom.2009.04.055
  27. Y. B. Guo, Y. Yao, and X. G. Di, “Research on structuralparameter optimization of binocular vision measuring systemfor parallel mechanism,” in Proc. IEEE International Conferenceon Mechatronics and Automation (Luoyang, China, Jun. 2006),pp. 1131-1135.

피인용 문헌

  1. Global calibration and equation reconstruction methods of a three dimensional curve generated from a laser plane in vision measurement vol.22, pp.18, 2014, https://doi.org/10.1364/OE.22.022043
  2. Bionic Vision-Based Intelligent Power Line Inspection System vol.2017, 2017, https://doi.org/10.1155/2017/4964287
  3. Size character optimization for measurement system with binocular vision and optical elements based on local particle swarm method vol.22, pp.1, 2015, https://doi.org/10.1007/s10043-015-0057-x
  4. Measurement Performance Assessment: Dynamic Calibration Compared with Static Calibration Method for Roller Tester of Vehicle Brake Force vol.6, 2014, https://doi.org/10.1155/2014/162435
  5. A positioning method for the feature points of a target board image adopting singular value decomposition vol.124, pp.14, 2013, https://doi.org/10.1016/j.ijleo.2012.08.020
  6. An extended machining error propagation network model for small-batch machining process control of aircraft landing gear parts vol.231, pp.7, 2017, https://doi.org/10.1177/0954410016652153
  7. A two-step calibration method of a large FOV binocular stereovision sensor for onsite measurement vol.62, 2015, https://doi.org/10.1016/j.measurement.2014.10.037
  8. A Method for the Estimation of the Square Size in the Chessboard Image using Gray-level Co-occurrence Matrix vol.12, pp.2, 2012, https://doi.org/10.2478/v10048-012-0011-z
  9. Integrative evaluation of the optimal configuration for the measurement of the line segments using stereo vision vol.124, pp.11, 2013, https://doi.org/10.1016/j.ijleo.2013.01.018
  10. Comprehensive evaluation for measurement errors of a binocular vision system with long virtual baseline generated from double reflection mirrors vol.126, pp.23, 2015, https://doi.org/10.1016/j.ijleo.2015.08.063
  11. An onsite structure parameters calibration of large FOV binocular stereovision based on small-size 2D target vol.124, pp.21, 2013, https://doi.org/10.1016/j.ijleo.2013.03.077
  12. Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision vol.20, pp.1, 2016, https://doi.org/10.3807/JOSK.2016.20.1.107
  13. 3-D Reconstruction of Binocular Vision Using Distance Objective Generated From Two Pairs of Skew Projection Lines vol.5, 2017, https://doi.org/10.1109/ACCESS.2017.2777818
  14. A novel fuzzy three-dimensional grid navigation method for mobile robots vol.14, pp.3, 2017, https://doi.org/10.1177/1729881417710444
  15. Binocular vision measurement method for relative position and attitude based on dual-quaternion vol.64, pp.18, 2017, https://doi.org/10.1080/09500340.2017.1321798
  16. An improved measurement model of binocular vision using geometrical approximation vol.27, pp.12, 2016, https://doi.org/10.1088/0957-0233/27/12/125013
  17. Circle recognition and parameter measurement methods with the similarity constraint on the slope curve of the tangent lines to a contour vol.124, pp.16, 2013, https://doi.org/10.1016/j.ijleo.2012.07.008
  18. The Method of Multi-Camera Layout in Motion Capture System for Diverse Small Animals vol.8, pp.9, 2018, https://doi.org/10.3390/app8091562