DOI QR코드

DOI QR Code

Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope

  • Lee, Won-Jun (Department of Information and Communication Engineering, INHA University) ;
  • Kim, Dae-Chan (Department of Information and Communication Engineering, INHA University) ;
  • O, Beom-Hoan (Department of Information and Communication Engineering, INHA University) ;
  • Park, Se-Geun (Department of Information and Communication Engineering, INHA University) ;
  • Lee, El-Hang (Department of Information and Communication Engineering, INHA University) ;
  • Lee, Seung-Gol (Department of Information and Communication Engineering, INHA University)
  • Received : 2011.02.09
  • Accepted : 2011.02.23
  • Published : 2011.03.25

Abstract

In this study, the internal structure of an optical waveguide embedded in a flexible optical circuit board is observed with a confocal microscope. In order to increase the light reflection from an internal material interface with a very small index difference, and thus enhance the signal contrast, a theta microscopy scheme has been integrated into a conventional confocal microscope, and a high NA oil-immersion lens has been used. The interface reflectivity is increased from roughly 0.0015% to 0.025% by the proposed method, and the internal structure can thus be successfully measured.

Keywords

References

  1. G. L. Bona, B. J. Offreina, U. Bapsta, C. Bergera, R.Beyelera, R. Buddb, R. Dangela, L. Dellmanna, and F. Horsta,“Characterization of parallel optical-interconnect waveguidesintegrated on a printed circuit board,” Proc. SPIE 5453,134-141 (2004). https://doi.org/10.1117/12.545513
  2. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera,and R. T. Chen, “Flexible optical waveguide film fabricationsand optoelectronic devices integration for fully embeddedboard level optical interconnects,” J. Lightwave Technol.22, 2168-2176 (2004). https://doi.org/10.1109/JLT.2004.833815
  3. D. H. Hartman, G. R. Lalk, J. W. Howse, and R. R.Krchnavek, “Radiant cured polymer optical waveguides onprinted circuit boards for photonic interconnection use,” Appl.Opt. 28, 40-47 (1989). https://doi.org/10.1364/AO.28.000040
  4. E.-H. Lee, S. G. Lee, B. H. O, and S.-G. Park, “Polymer-basedoptical printed circuit board (O-PCB) as a potentialplatform for VLSI microphotonic integration,” J. NonlinearOpt. Phys. & Mater. 14, 409-425 (2005). https://doi.org/10.1142/S0218863505002864
  5. B.-H. Lee, N.-H. Shin, K. Jeong, M.-J. Park, B.-G. Kim,J.-H. Yoo, D.-G. Kim, K.-H. Yun, K.-S. Lee, K.-H. Kim,D.-K. Kim, and S.-H. Park, “Nondestructive optical measurementof refractive-index profile of graded-index lenses,” J.Opt. Soc. Korea 13, 468-471 (2009). https://doi.org/10.3807/JOSK.2009.13.4.468
  6. D.-S. Park, B.-H. O, S.-G. Park, E.-H. Lee, J.-H. Park, andS.-G. Lee, “Noise-robust phase gradient retrieval formulationfor phase-shifting interferometry,” J. Opt. Soc. Korea 14,131-136 (2010). https://doi.org/10.3807/JOSK.2010.14.2.131
  7. T. Wilson, Confocal Microscope (Academic Press, Oxford,UK, 1990).
  8. G. Min, Principles of Three-dimensional Imaging inConfocal Microscopes (World Scientific, Singapore, 1996).
  9. R. Kassies, K. O. Van Der Werf, A. Lenferink, C. N.Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “CombinedAFM and confocal fluorescence microscope for applicationsin bio-nanotechnology,” J. Microscopy 217, 109-116 (2004).
  10. A. Gerger, R. Hofmann-Wellenhof, U. Langsenlehner, E.Richtig, S. Koller, W. Weger, V. Ahlgrimm-Siess, M.Horn, H. Samonigg, and J. Smolle, “In vivo confocal laserscanning microscopy of melanocytic skin tumours diagnosticapplicability using unselected tumour images,” Br. J.Dermatol. 158, 329-333 (2008). https://doi.org/10.1111/j.1365-2133.2007.08389.x
  11. C. R. Fairley, T.-Y. Fu, B.-M. B. Tsai, and S. A. Young,“Confocal wafer inspection system and method,” U.S. Patent 0273196 (2008).
  12. S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocaltheta fluorescence microscopy with annular apertures,” Appl.Opt. 35, 126-130 (1996). https://doi.org/10.1364/AO.35.000126
  13. S. Lindek and E. H. K. Stelzer, “Optical transfer functionsfor confocal theta fluorescence microscopy,” J. Opt. Soc.Am. A 13, 479-482 (1996). https://doi.org/10.1364/JOSAA.13.000479
  14. M. J. Mandella, M. H. Garrett, and G. S. Kino, “Integratedangled-dual-axis confocal scanning endoscopes,” U.S. Patent 6522444 (2003).
  15. M. J. Mandella, G. S. Kino, and N. Y. Chan, “Dual-axisconfocal microscope having improved performance forthick samples,” U.S. Patent 7242521 (2007).
  16. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopyfor three-dimensional mechanical imaging,” Nature Photonics2, 39-43 (2008). https://doi.org/10.1038/nphoton.2007.250
  17. P. J. Dwyer, C. A. Dimarzio, and M. Rajadhyaksha, “Confocaltheta line-scanning microscope for imaging human tissues,”Appl. Opt. 46, 1843-1851 (2007). https://doi.org/10.1364/AO.46.001843
  18. T. Dabbs and M. Glass, “Fiber-optic confocal microscope,”Appl. Opt. 31, 3030-3035 (1992). https://doi.org/10.1364/AO.31.003030
  19. L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometrywith a fiber optical confocal scanning microscope,”Meas. Sci. Technol. 11, 1786-1791 (2000). https://doi.org/10.1088/0957-0233/11/12/319

Cited by

  1. Divided-aperture differential confocal fast-imaging microscopy vol.28, pp.3, 2017, https://doi.org/10.1088/1361-6501/aa552f
  2. Thermo-optic Characteristics of Micro-structured Optical Fiber Infiltrated with Mixture Liquids vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.231